
Example-Based Procedural Modeling Using Graph Grammars

PAUL MERRELL, -, USA

Fig. 1. From an example shape (a), our method automatically generates a graph grammar (b) that produces shapes (c) that are locally similar to the example.
The graph grammar consists of rules that transform graphs. The graphs are converted into a planar graph drawing to produce the final shape.

We present a method for automatically generating polygonal shapes from
an example using a graph grammar. Most procedural modeling techniques
use grammars with manually created rules, but our method can create them
automatically from an example. Our graph grammars generate graphs that
are locally similar to a given example. We disassemble the input into small
pieces called primitives and then reassemble the primitives into new graphs.
We organize all possible locally similar graphs into a hierarchy and find
matching graphs within the hierarchy. These matches are used to create a
graph grammar that can construct every locally similar graph. Our method
generates graphs using the grammar and then converts them into a planar
graph drawing to produce the final shape.

CCS Concepts: • Computing methodologies→Mesh geometry models.

Additional Key Words and Phrases: inverse procedural modeling, graph
grammar, local similarity

ACM Reference Format:
Paul Merrell. 2023. Example-Based Procedural Modeling Using Graph Gram-
mars. ACM Trans. Graph. 42, 4, Article 1 (August 2023), 16 pages. https:
//doi.org/10.1145/3592119

1 INTRODUCTION
Large detailed geometric shapes are needed in many different games,
animated movies, virtual worlds, and other applications. Creating
these complex shapes is a challenging labor-intensive task. This
remains one of the most important challenges in computer graphics.

Such shapes can be generated automatically using various gram-
mars. Grammars are very effective in generating complex variations.
But the grammar itself can be difficult to create. A grammar is made

Author’s address: Paul Merrell, paul@merrells.org, - , Redwood City, CA, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART1 $15.00
https://doi.org/10.1145/3592119

of production rules. It is often unclear what rules are needed to
produce a given set of shapes. Finding the rules is a difficult process
often requiring some trial and error. This process is technically chal-
lenging and resembles computer programming more than artistic
design. A simpler approach would be to create grammars automati-
cally from a set of desired shapes.
Our method begins with a set of polygonal example shapes and

automatically constructs a grammar that generates similar shapes.
The examples act as a guide for the new grammar, but not a strict
guide. The grammar should not merely reproduce the examples. It
should generalize the examples, developing novel variations from
them. Our approach is to require that the output be locally similar.
On a small local scale, each part of the output must match part of
the example. But at the same time, its large-scale structure can be
very different. Local similarity is used in many texture synthesis and
procedural modeling techniques. In these techniques, we expect the
examples to be self-similar and contain repeated parts. Otherwise,
the output will be the same as the input. Our method is focused
on local constraints. Large-scale constraints are also important for
controlling the output, but are not the focus of this work.

In our approach, we generate a shape by first determining its con-
nectivity and later determine its geometry. The shape’s connectivity
is represented by a graph with labeled edges and vertices. We first
synthesize a graph and later determine its precise geometry i.e. the
positions of its edges and vertices. The input shape is converted
into a graph and the graph is cut into small pieces called primitives.
Intuitively, our method synthesizes new graphs by gluing these
pieces together until the pieces are fully connected. Completing the
graph is relatively easy if the input graph is a tree with leaf nodes.
But if the graph does not have leaves, every path must be part of
a closed cycle. Closing every path can be exceptionally difficult.
Existing techniques do not handle these cycles properly. They either
avoid them by focusing on tree-like structures or they directly copy
the input with only minor changes. Handling cycles correctly is a
major contribution of our algorithm and allows it to handle arbitrary
polygonal input shapes.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592119
https://doi.org/10.1145/3592119
https://doi.org/10.1145/3592119

1:2 • Paul Merrell

Fig. 2. Overview. The input shape (a) is cut into primitives (b). Primitives are glued into new graphs which are organized into a hierarchy (c). From this, a graph
grammar (d) is constructed that generates angle graphs (e). Vertex positions are added to create a graph drawing (f) and decorations can be added (g, optional).

In approaching this problem, we first explain a way of reasoning
over the abstract space of locally similar graphs. We are the first
to fully describe this space. We use this reasoning to automatically
construct a graph grammar that can generate all locally similar
graphs. The grammar consists of rules that can modify a graph. The
rules can add or remove closed loops. Each rule produces a new
graph that is valid meaning that it has no paths left to be closed.
This graph grammar is then integrated into a method for generating
geometric shapes. The rules are applied incrementally and positions
are assigned to the edges and vertices.

Our approach has several advantages over existing inverse proce-
dural modeling techniques. It is not limited to specific shapes like
trees or buildings. It can handle arbitrary polygonal shapes. Our
outputs are not minor variations on the input. Our graph grammars
can synthesize any locally similar shape, producing a wide range of
possible large-scale structures.

2 RELATED WORK
A common approach to procedural modeling is to use some kind of
shape grammar [Müller et al. 2006; Smelik et al. 2014; Wonka et al.
2003]. In their original formulation [Stiny 1975], shape grammars
were complicated and were often manually applied with a human
deciding which rules to use. Shape grammars can be simplified to
set grammars [Stiny 1982; Wonka et al. 2003]. This simplification is
used in most recent work on shape grammars. Another approach
is to use an L-system [Lindenmayer 1968; Parish and Müller 2001;
Prusinkiewicz 1986]. L-systems are a string replacement grammar.
The string is turned into a model by interpreting it with a Logo-style
turtle. The rules of a shape grammar or L-system or growth engine
[Wong et al. 1998] are usually hand crafted by experts. Our rules
are generated automatically.

A few methods do generate rules automatically from an example.
This is known as inverse procedural modeling. Some techniques
learn a split shape grammar to model building facades [Aliaga et al.
2007; Demir et al. 2016; Martinovic and Van Gool 2013; Wu et al.
2014]. Talton et al. [2012] learn a grammar from 3D models with
scene graphs or web pages. Other methods learn L-systems from
trees or vector art [Guo et al. 2020; Stava et al. 2010, 2014]. These
techniques are only targeted to particular types of models and tree-
like structures are relatively easy to handle.

In terms of goals, our work is most similar to the work of Bokeloh
et al. [2010] and Liu et al. [2015]. Their methods generate a shape
grammar from an input shape. They search for partial symmetries
and use them to create a grammar that produces locally similar

shapes. These methods work well for some, but not all, input shapes.
They have trouble with cycles and cannot generate every locally
similar shape for even simple shapes like rectangles (Sec. 9.1).
Our method uses a different type of grammar called a graph

grammar. Graph grammars are a powerful framework introduced
decades ago [Ehrig et al. 1973; Pfaltz and Rosenfeld 1969]. They are
used in many applications [Rozenberg 1997] ranging from compiler
design, pattern recognition, concurrent systems, database design,
mesh subdivision [Smith et al. 2004; Velho 2003], and robot design
[Zhao et al. 2020]. But they are only rarely used for procedural
modeling [Christiansen and Bærentzen 2012; Pogrzebacz and Ilčík
2019]. Again these methods use hand crafted rules that are not
generated automatically. Fiser et al. [2016] learn a graph grammar
from a road network. They use this for data compression with the
output graph matching the input unless the grammar is edited.
Several methods take an existing shape grammar and direct it

towards a particular goal. Given a grammar, Talton et al. [2011]
use an MCMC method to optimize for a set of desired properties.
Dang et al. [2015] invited users to rate which generated shapes
they prefer and then their method directs a grammar towards these
preferences. Lipp et al. [2008] provide a framework for interactively
editing shape grammars.

There is a long tradition of requiring local similarity when doing
texture synthesis [Barnes et al. 2009; Cross and Jain 1983; Efros and
Leung 1999]. Similar approaches are used to generate locally similar
element arrangements [Ijiri et al. 2008], element textures [Ma et al.
2013, 2011], solid textures [Kopf et al. 2007], and curved shapes
[Hertzmann et al. 2002; Merrell and Manocha 2010; Tu et al. 2020].
Kalojanov et al. [2012] provide insights in the space of locally similar
shapes. These methods are very effective in their particular domain,
but geometric shapes used in procedural modeling are structured
quite differently. Wu and Zheng [2022] generate 3D shapes from
a single example using a GAN. Their method can robustly handle
noisy input data, but it tends to overfit to the training data.
Grid-based techniques can generate locally similar 3D shapes

from an example [Gumin 2016; Merrell 2007; Merrell and Manocha
2008; Yeh et al. 2013]. These techniques have been used in video
games like Bad North and Townscaper. Early work [Merrell 2007]
used constraint solving on a set of regular tiles. This was expanded
upon to operate on a set of parallel planes [Merrell and Manocha
2008, 2011], to use factor graphs [Yeh et al. 2013] and overlapping
tiles [Gumin 2016]. However these methods rely on a grid as an
integral part of their technique. The grid limits the shapes they can
produce. Overcoming this has been a long-standing problem.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-Based Procedural Modeling Using Graph Grammars • 1:3

3 METHOD

3.1 Goal: Local Similarity
Our goal is to generate an output shape that resembles an input
shape. The input and output must be locally similar. This means
that every small region within the output must match a small region
in the input. This idea can be described more formally using r-
similarity [Bokeloh et al. 2010]. Two shapes are r-similar if for every
neighborhood of radius 𝑟 in one shape, a translated copy of the
neighborhood appears in the other shape:

We take r-similarity to its logical extreme and make each neigh-
borhood as small as possible. The radius 𝑟 can be infinitesimally
small, so that each neighborhood contains an edge, vertex, or face.
A shape remains r-similar if its edges are shortened or extended to
any length, but the edge angles must remain the same.

3.2 Overview
Figure 2 gives an overview of our method, which consists of three
main parts. First, our method finds the set of locally similar graphs
and organizes them into a hierarchy (Fig 2a-c). Second, it constructs
a graph grammar from the hierarchy (Fig 2d). And third, it uses the
graph grammar to generate locally similar shapes (Fig 2e-g).
(I) Section 4. Our method begins with a polygonal input shape

(Fig. 2a) that is represented by a graph. This graph is disassembled
and cut into small pieces called primitives (Fig. 2b). The primitives
can be reassembled and glued into new graphs and the graphs are
organized into a graph hierarchy (Fig. 2c).
(II) Section 5. The graph hierarchy is used as a tool to construct

a graph grammar (Fig. 2d). Our method incrementally constructs
the hierarchy and finds matching graphs within it. Each match
provides a new production rule for our graph grammar and allows
us to remove parts of the graph hierarchy. Our method continues
finding matches ideally until the graph grammar has enough rules
to produce every locally similar graph.

(III) Section 6. The first two parts focus on generating graphs. We
hold off on determining the shape’s geometry until the last part.
Our graph grammars generate labeled graphs with straight edges at
known angles (Fig. 2e). Graphs with this property are called angle
graphs [Garg 1998]. Our angle graphs are missing vertex positions
and edge lengths. The next step is to fill in this information through
rejection sampling. An angle graph with vertex positions is called a
graph drawing (Fig. 2f). Finally, our method can add decorations to
the geometry in an optional post-processing step (Fig. 2g).

3.3 Notation & Representation
The input and output shape consists of vertices, edges, and faces.

Face Labels.The faces are labeled in the input and output. Different
labels are shown in different colors. Figure 3a shows two face labels.

Fig. 3. (a) Face and edge labels. (b) Positive ∧ and negative ∨ turns for paths.
(c,d) Graphs are assembled by gluing half-edges together. The opposite of
gluing is cutting. Each graph𝐺 has a boundary string 𝜕𝐺 .

Edge Labels. The edge labels depend on the face labels. An edge
has a face on its left side and on its right. If these two faces are
labeled 𝑙 and 𝑟 , then the edge is labeled 𝑎 = (𝑙, 𝑟 , 𝜃) where 𝜃 is its
tangent angle. According to this definition, edges with the same
label are locally similar.
The Cut Operation. A cut splits an edge 𝑎 into two half-edges

labeled 𝑎 and 𝑎. Figure 3c,d shows a cut in reverse. Half-edges are
illustrated as lines that end in an empty circle. While full edges
are undirected, half-edges are directed. The half-edge 𝑎 points in a
negative direction 𝜃 ∈ [−180◦, 0◦). While the opposite half-edge 𝑎
points in the opposite direction 𝜃 = 𝜃 + 180◦ ∈ [0◦, 180◦).

The Glue Operation. Two half-edges 𝑎 and 𝑎 can be glued together
to form one full edge. Figure 3c,d shows two examples. Cutting and
gluing are exact opposites.
Planarity. A drawing of a graph is planar if its edges do not

intersect. Planarity depends on how the tangent angle changes as
we follow a path around the graph. We can determine the tangent
angle of each half-edge from its label 𝑎 or 𝑎. But the angles wrap,
so that the labels alone do not tell us if the path has turned 𝜃 or
𝜃 + 360◦ or 𝜃 + 720◦ or more. To keep track of the angles wrapping,
we define positive and negative turns:

Positive Turn ∧. If a path is turning counter-clockwise, its tangent
angle 𝜃 is increasing until it reaches 180◦. At that point it wraps to
−180◦. We call this wrapping a positive turn ∧. We use the symbol
∧ since the path makes a ∧ shape (See Fig. 3b).

Negative Turn ∨. If a path is turning clockwise, its tangent angle
𝜃 wraps in the opposite direction from −180◦ to 180◦. We call this
a negative turn ∨. The path makes a ∨ shape. We sometimes use
exponents to describe repeated turns: ∧2 = ∧∧ and ∧−2 = ∨∨.
The Graph Boundary String. We introduce a new compact no-

tation that fully describes the possible gluing operations assum-
ing planarity. Each graph 𝐺 has a boundary string 𝜕𝐺 . The string
𝜕𝐺 contains every half-edge and every turn in 𝐺 . For example,
𝜕𝐺1 = 𝑦∧𝑏𝑎 means the graph 𝐺1 has three half-edges: 𝑦𝑏𝑎 and
one turn: ∧ and they appear in the order 𝑦∧𝑏𝑎 as we follow a path

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 • Paul Merrell

counter-clockwise around 𝐺1 (Fig. 3cd). This path forms a circular
loop around the graph. It is unclear where the path should start.
The loop is the same no matter where it started. We treat different
starting points as being equivalent by defining shifted strings to
be equal: 𝑦∧𝑏𝑎 = ∧𝑏𝑎𝑦 = 𝑏𝑎𝑦∧. Consecutive positive and negative
turns cancel: 𝑎∧𝑥∧∨ = 𝑎∧𝑥 . Let 𝑃𝐺 and 𝑁𝐺 be the number of posi-
tive and negatives turns for any graph 𝐺 . Then 𝑃𝐺 − 𝑁𝐺 = 1 since
the path loops once counter-clockwise.

4 FINDING LOCALLY SIMILAR GRAPHS

4.1 Disassembly: Cutting Into Primitives
Our method begins by cutting the input shape into small pieces.
The input shape consists of vertices, edges, and faces (Fig. 2a). We
can convert the input shape 𝑆 into a graph 𝐺𝑆 without losing any
essential information because it is contained in the edge labels. Our
method then disassembles the input graph 𝐺𝑆 by cutting it into as
many pieces as possible (Fig. 2b & 4). Every edge is cut into two half-
edges. Afterwards, the vertices of𝐺𝑆 are each disconnected from the
other vertices and are surrounded by half-edges. Each disconnected
piece is a new graph. We call these graphs primitives since they are
the most basic building blocks of our method. Any graph 𝐻 that is
assembled from these primitives will be locally similar to 𝐺𝑆 .

Fig. 4. (a) A diagonal box and (b) a platform shape are cut into primitives.

4.2 Assembly: Gluing Primitives Together
Primitives are glued together at their half-edges. Half-edges can be
glued in two different ways which we call branch gluing and loop
gluing. Branch gluing means the two half-edges are on disconnected
graphs with no path between them (Fig. 3c). Loop gluing means the
half-edges are on a connected graph (Fig. 3d). If such half-edges are
glued together, they form a loop. Loop gluing and branch gluing
change the boundary string according to a simple string replacement.
This is explained more below, but can be summarized as:

Loop Glue: 𝑎𝑎 → 𝜖 𝑎∨𝑎∧ → 𝜖

Branch Glue 𝑎𝐵 to 𝑎: 𝑎 → 𝐵∨ 𝑎𝐵 to 𝑎: 𝑎 → ∨𝐵

where 𝜖 is the empty string and uppercase letters like 𝐵 represent
arbitrary strings. The gluing operations define a context-sensitive
grammar that acts on the boundary string. The loop gluing rules are
context-sensitive, while the branch gluing rules are context-free.

Loop gluing creates closed loops. In a planar graph, closed loops
must turn 360◦. So the half-edges 𝑎 and 𝑎 can only be loop glued if
the path between them turns ±360◦. When the path turns +360◦, the
boundary string contains the substring 𝑎𝑎 for some label 𝑎. When
the path turns −360◦, it contains the substring 𝑎∨𝑎∧. Gluing the
half-edges removes these substrings: 𝑎𝑎 → 𝜖 and 𝑎∨𝑎∧ → 𝜖 .
In branch gluing, two graphs 𝐺1 and 𝐺2 are glued together. If

we glue the graphs at the half-edges 𝑎 and 𝑎, then the two graph

Fig. 5. A graph hierarchy starts simple and grows more complex as primi-
tives and loops are glued. From the hierarchy, a graph grammar with five
rules is found by matching boundary strings.

boundaries 𝐵1𝑎 and 𝑎𝐵2 are combined into 𝐵1∨𝐵2. For example, in
Figure 3c, the boundaries 𝜕𝐺1 = 𝑦∧𝑏𝑎 and 𝜕𝐺2 = 𝑎∧𝑥𝑦 are glued
together to form 𝜕𝐺3 = 𝑦∧𝑏𝑥𝑦. This can be described as a string
replacement in two different ways that are equivalent. If we glue
the graph 𝑎𝐵 to the half-edge 𝑎, this replaces 𝑎 → 𝐵∨. If we glue
the graph 𝑎𝐵 to the half-edge 𝑎, this replaces 𝑎 → ∨𝐵.

Branch gluing could alternatively be described as looping gluing
combined with a splice operation. We use the symbol | for splicing.
The boundary strings 𝐴 and 𝐵 represent closed paths. 𝐴|𝐵 | means
that the end of path 𝐴 is attached to the start of 𝐵 and the end of 𝐵
is attached to the start of 𝐴. The result of a splice is 𝐴|𝐵 | → 𝐴∨𝐵.
The strings are concatenated with a turn ∨ added in between:

The extra turn ∨ is necessary for the boundary to turn once counter-
clockwise: 𝑃𝐴∨𝐵 − 𝑁𝐴∨𝐵 = 𝑃𝐴 − 𝑁𝐴 + (−1) + 𝑃𝐵 − 𝑁𝐵 = 1. Branch
gluing 𝐵𝑎 and𝑎𝐶 is equivalent to a splice 𝐵𝑎 |𝑎𝐶 | → 𝐵𝑎∨𝑎𝐶 followed
by loop gluing 𝐵𝑎∨𝑎∧∨𝐶 → 𝐵∨𝐶 .

4.3 The Graph Hierarchy
We now explain how to enumerate every possible way of gluing
primitives into graphs. Properly defining this space is an important
contribution of our work. Each possible graph is placed inside of a
hierarchy (Fig. 5). The hierarchy is divided into generations. Genera-
tion 𝑖 consists of every graph that can be constructed using 𝑖 gluing
operations. If the hierarchy were continued forever to infinitely
many generations, it would contain every possible way of gluing
the primitives together. It would contain every locally similar graph.
Such a hierarchy cannot be implemented since it would be infinitely

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-Based Procedural Modeling Using Graph Grammars • 1:5

Fig. 6. One way of constructing graphs (a) is to randomly glue primitives
together until the graph is complete. A better way is to use a graph grammar
(b). Fig. 5 shows how this graph grammar is automatically generated.

large. Thus this hierarchy should not be thought of as a concrete
data structure, but rather as an abstract model. We call this the
abstract graph hierarchy. In Section 5, we will implement a concrete
version of this hierarchy as a data structure. But we will limit that
concrete hierarchy to be a finite subset of the full abstract hierarchy.
Figure 5 shows a graph hierarchy. It will be used as a guiding

example through this section. The hierarchy is similar to a tree. Each
graph has parents, children, and descendants. But the hierarchy is
actually not a tree since two siblings can share a child.

The simplest graphs are at the top of the hierarchy. As we descend,
the graphs grow more complex. Generation 0 contains the edge
graphs. Generation 1 contains the primitives. Each graph has a set
of children. To find a graph’s children, perform all possible loop
gluing operations and branch gluing operations with the primitives:

A child can have multiple parents. Each of its parents is a copy of
the child with one primitive cut out or one loop cut:

4.4 Complete Graphs
A graph is complete if it has no remaining half-edges left to glue. A
complete graph 𝐺 always has the boundary string 𝜕𝐺 = ∧. Other-
wise, the graph is incomplete.

Our goal is to generate complete graphs. One possible approach
is to do a random walk through the graph hierarchy. Basically, we

would randomly glue primitives together until reaching a complete
graph by chance. Figure 6a illustrates the idea. This simple approach
works fine for some input graphs including graphs without cycles.
But for many other inputs, this is an error-prone and inefficient way
to construct graphs. We might start constructing a graph and then
be unable to complete it. Consider the two incomplete graphs below.
The left graph is assembled from the diagonal primitives (Fig. 4a).
The right graph is assembled from the platform primitives (Fig. 4b):

The left graph is difficult to complete. The right graph is impossible
to complete. We consider a different strategy in Section 5 that can
generate every complete graph, but without the wrong turns and
dead ends that might be encountered along a random walk.

5 GRAPH GRAMMARS
In this section, we explain how to use the graph hierarchy to con-
struct a graph grammar that can produce all complete, locally similar
graphs. First, we give some background on graph grammars. Graph
grammars generalize the concept of a formal grammar based on
strings into graphs [Rozenberg 1997]. There are many different
approaches to graph grammars. We use the gluing approach, also
known as the algebraic approach [Ehrig et al. 1973]. Within that
approach, we use double-pushout graph grammars (DPO). The term
pushout is borrowed from category theory. Graph grammars are
often described using category theory. But we prefer to center our
discussion around graph gluing, following König et al. [2018].

Morphism: A graph homomorphism (or morphism for short) maps
between two graphs𝐺 → 𝐻 . It consists of two mappings. One from
𝐺 ’s vertices to 𝐻 ’s vertices. And one from 𝐺 ’s edges to 𝐻 ’s edges.
The mappings should respect edge and vertex labels.

Our grammars consist of a set of DPO production rules. A DPO
rule contains a left graph 𝐿 and a right graph 𝑅. The right graph
replaces the left. In addition to specifying the graphs 𝐿 and 𝑅, we
must define the relationship between them. This is done through an
interface graph 𝐼 and two morphisms: 𝜑𝐿 : 𝐼 → 𝐿 and 𝜑𝑅 : 𝐼 → 𝑅

(Fig. 7).

Fig. 7. A double-pushout production rule. The left side 𝐿 is matched with
𝐺 . 𝐿 is cut from𝐺 and 𝑅 is glued in its place to make 𝐻 .

In our method, graphs 𝐿 and 𝑅 always have the same graph
boundary string (𝜕𝐿 = 𝜕𝑅 = 𝑦𝑦∧ in Fig. 7). This is necessary so

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 • Paul Merrell

Algorithm 1 Find Graph Grammar From Primitives
1: Starting from primitives, glue graphs together to build a con-

crete hierarchy ideally until every complete shape is reducible.
2: for each graph 𝐺 do
3: If possible, use 𝐺 in a rule on the left or right (Sec. 5.3-5.5).
4: if 𝐺 ’s has no complete descendants then
5: Remove 𝐺 and all its descendants (Sec. 5.6).

that 𝑅 can replace 𝐿 without breaking planarity. Graphs 𝐿 and 𝑅

have the same half-edges. Each half-edge ends in a vertex shown
as an empty circle. The interface graph 𝐼 consists of those vertices
and the morphisms 𝜑𝐿 and 𝜑𝑅 map between them based on their
matching half-edges. In most figures, we omit the interface 𝐼 since
in our method 𝐼 is fully determined from the half-edges of 𝐿 and 𝑅.
To apply a DPO rule to graph 𝐺 , we find a subgraph of 𝐺 that

matches 𝐿. This is described by a morphism 𝑚 called the match
where𝑚 : 𝐿 → 𝐺 . The subgraph of𝐺 that is matched to 𝐿 is cut out,
and 𝑅 is glued in its place. Cutting 𝐿 from 𝐺 produces the context
graph 𝐶 . Gluing 𝑅 to 𝐶 produces the final graph 𝐻 . To summarize,
we match a part of 𝐺 to 𝐿 and replace it with 𝑅 to produce 𝐻 .

Another perspective is that Figure 7 consists of two graph gluing
operations. On the left side, 𝐿 is glued to 𝐶 to make 𝐺 . On the right
side 𝑅 is glued to 𝐶 to make 𝐻 . According to category theory, these
two gluing operations are pushouts and this is a double pushout.

5.1 Outline
Algorithm 1 summarizes our approach. The input to the algorithm is
a set of primitives. The output is a set of rules that make up a graph
grammar. We begin by building a graph hierarchy incrementally
starting from the primitives, using the same branch gluing and loop
gluing operations described in Section 4.3. But this hierarchy is
smaller. Before each graph𝐺 is added to the hierarchy, we check if
it is possible to create a rule that will simplify 𝐺 . (We explain how
to create the rules in Sec. 5.3). If a graph 𝐺 can be simplified by a
rule, we say that𝐺 is reducible and we remove it from the hierarchy.
Each time we add a graph𝐺 , we check if𝐺 can be simplified or if𝐺
can be used to simplify another graph.

Graph Complexity. We define a way of ordering the graphs from
simple to complex. Graphs with fewer half-edges are simpler than
those with more. If two graphs have an equal number of half-edges,
then the graphs are ordered according to the hierarchy. Graphs
added earlier in the hierarchy are simpler than those added later.
We use this to order the graphs in each rule. The right side 𝑅 of

a rule is always simpler than the left 𝐿. A graph is reducible if it is
on the left side of a rule. A rule can split a graph 𝐿 into multiple
simpler graphs on the right 𝑅.
If a graph grammar contains enough rules to reduce every com-

plete graph in the hierarchy, then it can fully construct every locally
similar graph. We explain the theory behind this and how we can
make such a claim in Section 5.2. We explain how to find the pro-
duction rules in Section 5.3. We then discuss a complication that
can happen if a graph is reduced by one of its descendants in Sec-
tions 5.4 - 5.5. It is possible that a graph has an infinite number of
irreducible descendants that are all incomplete. Our method detects

these graphs and removes them and their descendants (see Section
5.6). Ideally, we continue adding rules to the hierarchy until we are
certain that every complete graph is reducible. But in some cases,
the number of graphs in each generation grows faster than they can
be removed. Then the algorithm exits without a guarantee that all
graphs are reducible (see Section 5.7).

5.2 How this Algorithm Works
An important property of DPO graph grammars is that all produc-
tion rules are invertible [Ehrig 1979]. Each rule can transform a left
graph into a right graph: 𝐿 → 𝑅, or it can be reversed to transform
a right graph into a left graph: 𝑅 → 𝐿.
By convention, we put the simpler graph on the right 𝑅, so that

applying a rule 𝐿 → 𝑅 will simplify any graph that it is applied to
𝐺 → 𝐻 . We say that applying a rule 𝐿 → 𝑅 is destructive because
it deconstructs the graph into simpler parts. Applying it 𝑅 → 𝐿 is
constructive because it constructs a more complex graph.

Figure 6b shows rules being applied constructively i.e. a complex
graph is constructed from a simple one. The simplest graph is the
empty graph ∅. If a complex graph can be deconstructed from a
simple one, the reverse is also true. By reversing each step in Figure
6b, a complex graph can be deconstructed into the empty graph.

A graph can always be reduced to a set of irreducible graphs. If a
graph is reducible, it can be reduced to another graph. If that graph
is reducible, it can be reduced to an even simpler graph. This is a
proof by infinite descent. The graphs can continue to be reduced ad
infinitum until an irreducible graph is reached.
Our algorithm continues adding production rules ideally until

every complete graph is reducible. At that point, the only irreducible
graph left is the empty graph ∅. Every complete graph can be re-
duced to ∅. And since every destructive action can be reversed, the
reverse is also true. Every complete graph can be constructed from
the empty graph ∅. At that point, our graph grammar can construct
every complete, locally similar graph and Algorithm 1 terminates.

5.2.1 Reducing All Descendants. If a rule can be applied to 𝐿, it can
be applied to all of 𝐿’s descendants because its descendants contain
𝐿 as a subgraph. Remember that 𝐿’s descendants are found by gluing
primitives to 𝐿. Ordinarily, if 𝐿 can be reduced by some rule, then
all of 𝐿’s descendants can be reduced by the same rule. (There is
an important exception to this statement discussed in Section 5.4).
Below we show an example. A graph 𝐿 can be reduced by Rule 1 in
Figure 5 and so can all of its descendants.

5.3 Finding a Rule to Reduce a Graph
Boundary Strings. Our method finds production rules by matching
boundary strings. A graph 𝑅 can replace a graph 𝐿 if both graphs
have the same boundary string 𝜕𝑅 = 𝜕𝐿. In Figure 7, 𝜕𝑅 = 𝜕𝐿 = 𝑦𝑦∧.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-Based Procedural Modeling Using Graph Grammars • 1:7

Similarly, the five rules in Figure 5, have the same boundary strings
on the left and right sides.

When two graphs 𝐿 and 𝑅 have the same boundary strings, they
can seamlessly replace one another. Their half-edges are the same,
so each of 𝐿’s half-edges can be cut out and replaced by one of 𝑅’s
half-edges. They also have the same turns ∧ and ∨ so the paths
between the half-edges turn the same. They have the same total
curvature. This is necessary to preserve planarity.
We find rules by string matching. For a given boundary string

𝜕𝐿, we can match 𝐿 to a graph 𝑅 with the same boundary 𝜕𝑅 = 𝜕𝐿.
But we could also match 𝐿 to a set of graphs {𝑅1, 𝑅2, . . .}. This set
matches 𝐿 if the strings {𝜕𝑅1, 𝜕𝑅2, . . .} can be combined to equal 𝜕𝐿.

Our approach is outlined in pseudocode in Algorithm 2. This is a
recursive divide-and-conquer algorithm. For example, suppose that
graph 𝐿 has the boundary 𝜕𝐿 = 𝑎𝑏𝑐𝑑𝑒 𝑓 𝑔ℎ𝑖∧:

Our algorithm tries to match 𝐿 using every graph 𝑅 in the hier-
archy. It tries to match each 𝜕𝑅 to some part of 𝜕𝐿. Suppose that
𝜕𝑅 = 𝑎𝑐𝑔∧. After matching 𝜕𝑅 to 𝜕𝐿, we are left with three un-
matched substrings: 𝑏, 𝑑𝑒 𝑓 , and ℎ𝑖 . The algorithm runs recursively
on each substring. One solution might be to match 𝜕𝐿 = 𝑎𝑏𝑐𝑑𝑒 𝑓 𝑔ℎ𝑖∧
to 𝑎𝑐𝑔∧, 𝑏∧, 𝑑∧, 𝑒 𝑓 ∧, and ℎ𝑖∧ assuming those graphs are in the hi-
erarchy.

Thewaywe combine the boundary strings {𝜕𝑅1, 𝜕𝑅2, . . .} requires
some additional explanation. The strings are combined by splicing
them together. When we splice two boundary strings an extra turn
∨ is added between them: 𝜕𝑅1 |𝜕𝑅2 | → 𝜕𝑅1∨𝜕𝑅2. In fact, there are
multiple ways to splice two strings together. Below are two examples
where the same right graphs 𝑅1 and 𝑅2 are spliced together in
different ways to produce different left graphs:𝑦∧𝑦𝑦𝑦 and𝑦𝑦∨𝑦∧𝑦∧

When we splice together two strings, we are free to add extra turns
between them. The splice operation can be written more generally
as 𝐴|𝐵 | → 𝐴∧𝑛𝐵∨𝑛+1 for some 𝑛 ∈ Z.

Suppose we have matched 𝜕𝑅 to part of 𝜕𝐿. And let 𝜕𝐿𝑖 be the un-
matched part so that 𝜕𝐿 = 𝜕𝑅𝜕𝐿𝑖 . Wewish to splice some string to 𝜕𝑅
to get 𝜕𝐿. This formula will give us the desired result: 𝜕𝑅 |∨𝑛𝜕𝐿𝑖∧𝑛+1 |
→ 𝜕𝑅𝜕𝐿𝑖 = 𝜕𝐿. Consequently on line 2 of Algorithm 2, we match
𝜕𝑅 with ∨𝑛𝜕𝐿∧𝑛 and on line 5 we match with 𝜕𝐿𝑖∧. Notice that in
the example above the unmatched substrings were: 𝑏, 𝑑𝑒 𝑓 , and ℎ𝑖
and they were matched to 𝑏∧, 𝑑𝑒 𝑓 ∧, and ℎ𝑖∧. The extra ∧ cancels
with the ∨ that is added during splicing.

Algorithm 2 findMatchingGroups(𝜕𝐿): 𝜕𝐿 is a boundary string

1: for each graph 𝑅 with boundary 𝜕𝑅 in the hierarchy do
2: for each way of matching 𝜕𝑅 with ∨𝑛𝜕𝐿∧𝑛 for some 𝑛 do
3: 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 = [𝑅]
4: for each unmatched substring 𝜕𝐿𝑖 do
5: 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 .push(findMatchingGroups(𝜕𝐿𝑖∧));
6: if all𝑚𝑎𝑡𝑐ℎ𝑒𝑠 successful return𝑚𝑎𝑡𝑐ℎ𝑒𝑠;
7: return null

5.3.1 Special Case: Complete Graphs. A complete graph𝐺 has no
half-edges and has the boundary string 𝜕𝐺 = ∧. For every complete
graph, we can define a rule that deletes the graph like Rule 0 in
Figure 5. We call these starter rules.
Like other grammars, graph grammars

have an axiom or a start graph that they
begin with and then rules are applied to
derive new graphs. In our method, the start graph is an empty graph
∅. Initially, the starter rules are the only rules that can be applied.

5.4 Reducing a Graph with Its Descendants
Suppose that a rule simplifies the graph 𝐿 into the graphs 𝑅1 and
𝑅2. Ordinarily, that would mean that 𝐿 and all its descendants are
reducible (Sec. 5.2.1). But what if 𝑅1 is a descendant of 𝐿? This rule
does not reduce every descendant of 𝐿 since applying the rule to
𝑅1 replaces 𝑅1 with itself. This does not simplify 𝑅1. For example,
consider this rule from the Diagonal example (Fig. 4a):

This rule reduces the left graph 𝜕𝐿 = 𝑦𝑥𝑦𝑥∧ into two simpler right
graphs 𝜕𝑅1 = 𝑦𝑥∧ and 𝜕𝑅2 = 𝑦𝑥∧. 𝑅1 and 𝑅2 are simpler than 𝐿

since they have two half-edges and 𝐿 has four. 𝑅1 and 𝑅2 contain 𝐿

as a subgraph, so they are descendants of 𝐿.
This rule is still useful. It can reduce all descendants of 𝐿 besides

those that are descendants of 𝑅1 and 𝑅2. Our method then restruc-
tures the graph hierarchy. It removes 𝐿 and its descendants from the
hierarchy and replaces them with 𝑅1 and 𝑅2 and their descendants.
Every descendant of 𝐿 can be turned into a descendant of 𝑅1 and
𝑅2 using the above rule:

This scenario only happens occasionally. In most of our results,
our algorithm can finish without using any rules that contain de-
scendants of 𝐿 on the right side of the rule. Often this technique
reduces the number of rules, but the algorithm can finish without it.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 • Paul Merrell

5.5 One-half-edge Graphs, Stubs
If a graph has one half-edge, its boundary string is 𝑎∧ or 𝑎∧ for
some label 𝑎. We call these graphs stubs. If the stub 𝑎∧ is glued
to half-edge 𝑎, then 𝑎 → ∧∨ = 𝜖 according to Section 4.2. This
property is very useful. Stubs often exist. If the input graph has
no cycles, then a pair of stubs 𝑎∧ and 𝑎∧ exists for every label 𝑎.
And even when the input graph has only cycles, stubs often exist.
Our algorithm finds any stubs that can be created since our graph
hierarchy checks every locally similar graph. Our algorithm finds
stubs that are not in the primitives and are not part of the input
graph.
Stubs are very useful for deconstructing graphs. If the stubs 𝑎∧

and 𝑎∧ exist, every primitive and every edge that has the label 𝑎 can
be deconstructed. For example, below left is an input graph. The
input contains no stubs. But when we build the graph hierarchy we
find stubs that can deconstruct all the primitives.

The approach outlined in Section 5.4 applies here since the stub
𝑥∧ is a descendant of the primitive 𝑦𝑥∧ and it can also deconstruct
𝑦𝑥∧. Every primitive and every graph can be deconstructed into
the four stubs: 𝑥∧, 𝑥∧, 𝑦∧, and 𝑦∧. Below a shape is deconstructed
by applying the rules 𝑥𝑥∧ → 𝑥∧|𝑥∧| and 𝑦𝑦∧ → 𝑦∧|𝑦∧|. The
remaining graphs can be deconstructed by 8 starter rules. In this
case, the stubs alone solve the problem.

5.6 No Complete Irreducible Descendants
The graph hierarchy may contain graphs that cannot be reduced.
For example, if Figure 5 were continued several more generations,
we would see the graph 𝑦∧4𝑦∨3 inside the hierarchy:

Not only is 𝑦∧4𝑦∨3 irreducible, it is part of an infinite set of
irreducible graphs of the form 𝑦∧𝑛+1𝑦∨𝑛 for some 𝑛. The hierarchy
of Figure 5 contains no stubs. Each graph can only be completed
by forming a path that turns 360◦ and then loop gluing it. The path
from 𝑦 to 𝑦 has 4 counter-clockwise turns (∧4). The only way to
form it into a loop is for it to turn clockwise. But if anything is glued
to the path to turn it clockwise, the resulting graph can be reduced

by one of Figure 5’s rules. Therefore every descendant of 𝑦∧4𝑦∨3 is
reducible or incomplete.
We need to detect and remove graphs with only reducible or

incomplete descendants. Otherwise, we cannot be certain that our
grammar can reduce every complete graph.Wework through amore
complex example in Appendix C. We consider all the options for a
graph. We show that the half-edges always end up in a replacement
cycle and that the graph cannot be completed.

For every boundary string, there exists a complementary bound-
ary string that could be glued to it to make it complete. For example,
𝑎𝑏𝑐∧ can be glued to 𝑐𝑏𝑎∧. A graph can be completed if and only if
a complementary string can be derived using the context-sensitive
grammar defined in Section 4.2 and splicing.

We can guarantee that all of a graph’s descendants are reducible
or incomplete if: (1) The graph contains a half-edge that has turned
more than 360◦ from the previous or next half-edge. (2) The total
curvature stays above 360◦ through every path that descends from
the graph. Considering that every sufficiently long path must end
either in a stub or be part of a replacement cycle, that means (3)
none of the paths ends in a stub and (4) every cycle has positive
or zero curvature. If these conditions are met the graph cannot be
completed and it has no complete descendants. The graph and all
its descendants are removed from the hierarchy.

5.7 The Growth of the Graph Hierarchy
For some graph hierarchies, it can be very difficult to track down and
conclusively show that every complete graph is reducible. There are
simply too many ways that the graphs can spiral in on themselves.
A simple solution is to limit the number of generations or half-

edges in the hierarchy or to ignore graphs that have turned more
than 360◦. The downside is that we can no longer be certain that our
grammar can produce every locally similar graph. The remaining
irreducible graphs are very complex spiraled shapes. We suspect
most of them have no complete irreducible descendants, but we
cannot be certain of this. Here are some examples of graphs that
remain in the hierarchy for the Castle example in Figure 1:

This is more of an issue when we extend the algorithm to 3D
shapes in Section 7. For 2D shapes, we only need to limit the size
of the hierarchy in a few cases. And also we can see that these
grammars still produce a rich variety of shapes and so as a practical
matter they fulfill the desired goals.

6 USING THE GRAPH GRAMMAR
Now that we have a graph grammar (Fig. 2d), this section explains
how to use it to generate a graph drawing (Fig. 2f). Our approach is
described in pseudocode in Algorithm 3. We use the graph grammar
to go on a randomwalk through the space of complete locally similar
shapes. Algorithm 3 begins with an empty graph ∅ and changes it
incrementally. At each iteration, our method proposes a change to
the graph using a rule (Line 3, Sec. 6.1). Each rule specifies what

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-Based Procedural Modeling Using Graph Grammars • 1:9

Algorithm 3 Generate Graph Drawing From Grammar
1: Start with an empty graph ∅.
2: for 𝑛 = 1 to 𝑁 do
3: Propose a change to the graph using a rule.
4: for 𝑖 = 1 to 𝐼 and not accepted do
5: Find the space of consistent graph drawings: x̂ + K𝐴Λ
6: for 𝑗 = 1 to 𝐽 and not accepted do
7: Sample from the space x̂ + K𝐴Λ
8: if sample is acceptable then accept new graph drawing.
9: Free a vertex. Allow its position to change.

edges and vertices to add or remove, but it does not specify the
vertex positions. By setting vertex positions, an angle graph (Fig.
2e) becomes a graph drawing (Fig. 2f). Our method proposes a set
of vertex positions (Line 7, Sec. 6.2) which are then accepted or
rejected (Line 8, Sec. 6.3). While this is a random process, it can be
guided by being selective in which proposals are accepted.

6.1 Propose an Angle Graph
At each iteration, our method proposes a change to the graph using
a production rule. Each DPO rule is bidirectional and can be applied
constructively 𝑅 → 𝐿 or destructively 𝐿 → 𝑅. Our method applies
the rules in both directions with no preference on the direction.
To apply a rule, our method matches part of the existing graph

to the left 𝐿 or right side 𝑅 of a rule. The match𝑚 is a morphism
depicted in Figure 7 that maps from the left side 𝐿 to the existing
graph𝐺 . Determining if a morphism exists between two arbitrary
graphs is an NP-hard problem [Cook 1971]. But our graphs are all
planar and planar graphs can be matched in linear time [Eppstein
1999]. When a match is found the left or right side is cut out and
replaced by the opposite side. There is one special case. A starter
rule has an empty graph on its right. Starter rules can create graphs
from nothing or delete graphs to nothing.

6.2 Propose a Graph Drawing
The next step is to propose a planar graph drawing. Our graph
grammars guarantee that all closed loops turn ±360◦. This is a
necessary but not a sufficient condition for a planar graph drawing
to exist. For a given angle graph, a planar graph drawing may not
exist and deciding if it exists is NP-hard [Garg 1998]. But there are
many exceptions. The problem can be solved in linear time if the
graph is a tree, a simple cycle, or a series-parallel graph [Garg 1998].

Our approach is to make small incremental changes to an existing
graph drawing. Ideally, we would only set the positions of vertices
added by the production rule and not move other vertices, but
sometimes it is necessary to move them. Our method repeatedly
attempts to create a planar graph drawing (Lines 4 - 9). If these
attempts fail, it tries a new rule at a new location. Because this
problem is NP-hard, we cannot rule out the possibility that it may
be exceptionally difficult to produce a planar drawing for some
input shapes. But we have not seen this behavior in any of our
experiments. Our method makes small incremental changes and
exits early if any particular angle graph is difficult to solve.

Our eventual goal is to produce a graph drawing that satisfies all
requirements listed below in Section 6.3. But first we need to find
the space of possible solutions. Following Bokeloh et al. [2012], we
will find the nullspace of a linear system.

The angle of each edge must agree with its label. Each edge
label 𝑎 = (𝑙, 𝑟 , 𝜃) specifies an angle 𝜃 . Let u = [cos𝜃, sin𝜃] be the
direction of an edge that goes between two vertices located at v0 and
v1, then v1 = v0 +𝑠u for some edge length 𝑠 . This is the equation for
one edge. The equations for all the edges can be combined into one
matrix equation Ax = b where x is a column vector of the vertex
positions and edge lengths.
The equation Ax = b may have many solutions or it may have

none. If matrix A has a nullspace, let K𝐴 be a basis for this nullspace.
If x̂ is a solution, then x̂ + K𝐴Λ is also a solution for any Λ. We
propose solutions by sampling from the solution space x̂ + K𝐴Λ.
On the other hand, Ax = b may not have a solution. The vertex

positions may be overconstrained. This is the potential problemwith
our initial strategy of moving as few vertices as possible. In this case,
it is necessary to move more vertices. We use an iterative approach.
At each iteration 𝑖 , there are a set of free vertices whose position can
change. While the vertices are overconstrained, randomly pick a
non-free vertex that is adjacent to a free vertex and turn it into a free
vertex (Line 9). Its position is now a free variable in our equations
and so are the lengths of any adjacent edges. We update A and b
accordingly. This gives us additional degrees of freedom which can
turn an overconstrained problem into a solvable problem.

6.3 Accept or Reject Proposal
The graph drawing must satisfy four requirements: (1) the edges
must have the correct angle, (2) the edge lengths must be positive
and fit within a specified range, (3) the drawing must be planar
i.e. the edges must not intersect, and (4) the drawing must not be
rejected by the Metropolis algorithm. (4) is optional.
For requirement (2), the user can specify length requirements.

Alternatively, we could infer this from training data. The user can
specifyminimum andmaximum edge lengths. The user could strictly
set the edge length to one particular value. Or they can require it
to be an integer multiple of some length. This is useful for tiled
patterns like windows or stairs.

Requirement (1) is satisfied by any solution of the form x̂ + K𝐴Λ.
Together requirements (1) and (2) have the same form as a linear
programming problem consisting of a set of linear constraints and
inequalities. But unlike linear programming, this is a sampling prob-
lem, not an optimization. We are sampling from the space of locally
similar shapes, not optimizing for any particular edge lengths. We
use rejection sampling. We sample solutions of the form x̂ + K𝐴Λ
and reject samples that do not satisfy the requirements. If 𝐽 samples
are rejected, we move onto a new proposal.

Requirement (4) is an optional way of optimizing the graph draw-
ing using a cost function. Our method can accept or reject the
new drawing based on a probability determined by the Metropolis-
Hastings Algorithm [Metropolis et al. 1953; Talton et al. 2011]. The
cost function is arbitrary. We can optimize for any property. We
can specify the desired density of the geometry or a particular edge
label we wish to see more or less frequently.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 • Paul Merrell

7 EXTENSION TO 3D SHAPES
Up to this point our discussion has focused on 2D shapes. But our
method can be extended to generate 3D shapes with a few changes.
In 3D, the input and output shapes consist of 3D vertices, edges,
faces, and volumes. This can be represented as a graph with the
edges labeled based on the adjacent faces and volumes. In the 2D
case, the boundary 𝜕𝐺 was a 1D path around a 2D graph 𝐺 . But in
the 3D case, the boundary 𝜕𝐺 is a 2D surface. In the 2D case, the
boundary 𝜕𝐺 could be represented by a 1D string because it was
1D. But in the 3D case, the boundary 𝜕𝐺 is a 2D graph. When we
go from the graph 𝐺 to the boundary 𝜕𝐺 , we essentially lose one
dimension. A 3D graph 𝐺 has a 2D boundary graph 𝜕𝐺 . The 2D
faces of𝐺 intersect 𝜕𝐺 along 1D edges. The 1D edges of𝐺 intersect
𝜕𝐺 at 0D points. These are the points we have been illustrating as
empty circles at the end of each half-edge.
The algorithm is very similar in 2D and 3D. The input shape is

disassembled into primitives. The primitives are glued together to
form a graph hierarchy. Loop gluing is possible when two half-edges
sharing a common face turn ±360◦. We define a coordinate system
for each face from which we can compute tangent angles 𝜃 and
positive ∧ and negative ∨ turns. In 2D, we find graph grammars by
matching boundary strings. In 3D, the boundary is a graph, so we
find graph isomorphisms instead.

We generalize the splice operation 𝐴|𝐵 | for the 3D case. Splicing
is now a graph operation where we swap the connections between
two edges. Below is an example of this operation. It merges two
separate graphs into one:

The two graphs are joined along a common face. Faces are edges
in the boundary. Edge 1 goes from vertex 𝑎 to 𝑏. Edge 2 from 𝑐 to
𝑑 . The splice operation replaces these edges. Edge 3 goes from 𝑎

to 𝑐 . Edge 4 from 𝑏 to 𝑑 . This is the same splice operation we have
been using. It only requires a shift in perspective thinking of the
boundary 𝜕𝐺 as a graph rather than a string.

8 RESULTS
Figures 1, 8, and 9 show shapes that are automatically generated
from an example. The inputs are an example shape, information
about the expected edge lengths (Sec. 6.3) and optionally instruc-
tions for decorating the vertices, edges, and faces (Appendix B).
From the example shape, our algorithm automatically generates
primitives, then a graph grammar, and then a decorated graph draw-
ing. Algorithm 3 contains a few parameters. We set 𝐼 = 5 and 𝐽 = 10
for all the results. We vary the number of iterations 𝑁 as needed
based on the size of the output and the amount of geometric detail
desired. Table 1 shows various statistics for the results in Figure 9.
Some of the results require some extra handling to include a ground
plane or to be fully connected (see Appendix A).

The graph grammars generated for Figure 8 are relatively simple
and easier to understand. The graph grammars generated for Figure

Table 1. Statistics for the Large-Scale Generated Shapes in Figure 1 and
9. Shows total computation time and time for creating grammars. The
remaining time is for rejection sampling and finding the match𝑚 in Fig. 7.
Shows number of iterations𝑁 , number of input primitives, output primitives,
graphs in the hierarchy, and rules in the grammar.

Total Gram. In Out Hier. # of
Name Time Time 𝑁 Prim. Prim. Graph Rules
1. Castle 9.5s 0.7s 4k 24 181 1,030 88
a. Cave 18.1s 0.2s 8k 27 655 425 87
b. Station 13.3s 0.3s 4k 12 185 240 25
c. Factory 43.7s 0.3s 20k 27 434 308 154
d. Islands 15.1s 1.3s 4k 45 848 2,901 367
e. Neigh. 14.1s 2.4s 4k 11 385 1,679 216
f. Flowers 10.5s 0.04s 2k 9 364 20 8
g. Village 11.8s 0.5s 4k 17 195 656 55
h. Trees 19.5s 0.3s 4k 13 342 449 33
i. Docks 93.7s 0.2s 20k 23 3,598 69 34
j. Skyline 44.6s 1.2s 4k 36 7,066 170 44
k. Houses 57.0s 0.3s 20k 11 1,716 45 13
l. Sci-Fi 78.8s 0.8s 10k 21 4,659 351 23

9 are much more complicated. Figure 8 demonstrates a number
of the techniques we describe including starter rules, stubs, and
grammars with no loops.

Figures 1 and 9 shows several examples of how an artist can use
our method to generate large complex shapes like castles, caves,
space stations, processing plants, islands, neighborhood streets,
flowers, villages, trees, houses, and city skylines. We apply bending
in Figures 9a,d-g. Figures 8h,i,q,r and 9i-l show some preliminary
results for 3D shapes.
Only a few of the 2D results require us to limit the size of the

hierarchy as discussed in Section 5.7, namely Figures 1, 9e,g,h. And
Figures 9e,h only have this problem because we add restrictions
according to Appendix A. (Fig. 9e is fully connected and Fig. 9h has
no loops.) 3D shapes provide more ways for the primitives to be
glued together. Most of the 3D shapes require us to limit the size of
the hierarchy which can impact the expressiveness of the grammar.

9 DISCUSSION

9.1 Comparison
Most procedural modeling techniques use hand-crafted rules de-
signed by experts [Christiansen and Bærentzen 2012; Lindenmayer
1968; Müller et al. 2006; Parish and Müller 2001; Pogrzebacz and
Ilčík 2019; Prusinkiewicz 1986; Smelik et al. 2014; Wong et al. 1998;
Wonka et al. 2003]. There are many of these techniques and they
can produce beautiful intricate shapes. But creating these rules is
difficult especially for non-experts.
There are several inverse procedural modeling techniques, but

they are usually restricted to particular types of shapes like build-
ing facades [Aliaga et al. 2007; Demir et al. 2016; Martinovic and
Van Gool 2013; Wu et al. 2014] or trees [Guo et al. 2020; Stava et al.
2010, 2014] and cannot handle arbitrary shapes. These methods also
do not explore new variations very well. They can create a grammar
from an input shape and then a user could edit the grammar to

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-Based Procedural Modeling Using Graph Grammars • 1:11

Fig. 8. From each set of primitives, a graph grammar is automatically generated and then it is used to generate shapes.
ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:12 • Paul Merrell

Fig. 9. From each example shape, a graph grammar is automatically generated. We show two output shapes produced from each grammar. One is large-scale
and one is detailed.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-Based Procedural Modeling Using Graph Grammars • 1:13

Fig. 10. Prior work has trouble with loops. Existing methods either do not close the loops [Gatys et al. 2015] or they directly copy the input with only minor
changes to the aspect ratio [Bokeloh et al. 2010]. The red lines in Bokeloh et al.’s grammar are their docking sites.

Fig. 11. 3D Comparison. Wu and Zheng, 2022 overfit to the input model.

produce slightly different output shapes. But the output is still quite
similar to the input. Our method greatly expands and generalizes
the input, exploring a large space of locally similar shapes.

Many techniques have a common failure point. Input shapes like
Figure 8d that have a tree-like structure are relatively easy to handle.
Several techniques handle them well such as the simple algorithm
described in Section 4.4. Completing a path by attaching a dead
end is simple. The difficulty comes when that is not an option and
the paths must be formed into closed loops. Most of the inputs in
Figures 8 & 9 have this property. Our method solves this difficult
problem.
Texture synthesis techniques have trouble with this issue. They

are designed to create locally similar textures. They work well on
normal textures and on some rasterized geometric shapes. They
work well on shapes with lots of dead ends like Figure 8d, but not
well on shapes with closed loops. They break down in one of two
ways. Either the result stops being locally similar or the result is
almost identical to the input with no new variations explored. Figure
10 compares our method with a texture synthesis method [Gatys
et al. 2015].

Wu and Zheng [2022] generate 3D shapes from an example. Their
method can robustly handle noisy volumetric data, while ours as-
sumes exact self-similarity. But their method overfits to the example
and does not fully explore the space of locally similar shapes. In the
example in Figure 11, their method only changes the shape’s aspect
ratio.
The most closely related method is the highly influential work

of Bokeloh et al. [2010]. Their method takes an input shape and
automatically creates a shape grammar that generates locally similar

shapes. Their method cuts the input shape into pieces by finding
partial symmetries where the input shape matches itself under a
rigid transformation. But unlike our method which cuts the input
into the smallest possible primitives, their method only allows cuts
at docking sites defined as sites that divide the shape into two dis-
connected pieces. So while their method cuts the input into pieces,
their pieces can be much larger than our primitives. And so their
method cannot produce every locally similar shape. Their method
works well for shapes with many dead ends like Figure 8d, but it has
trouble with shapes with closed loops. Figure 10 shows that their
method only produces minor variations on the input shape while
our method produces the full range of variations. Furthermore their
method generates similar limited results on most of the examples
in Figures 8 and 9.

9.2 Practical Utility
Anatural application of this technology is in video games and virtual
worlds where a rich variety of shapes are needed. Our method is
well-suited towards generating the type of randomized levels used
in many games. It is also useful for creating decorative designs like
floral patterns. Our method has the advantage of only requiring
small amount of training data. It can generalize from a limited data
set and create novel variations not found in it.

For this type of approach to work properly, the input shape must
contain repeated elements. For instance, if the input was a model of
a dog, our method would not find repeated elements and would not
generate new varieties of dogs from the input. Our method assumes
some edges repeat exactly and does not handle noisy input data.

9.3 User Control
Our method generates locally similar shapes at random. It enforces
local constraints, but not large-scale constraints. Large-scale con-
straints are needed in many applications to give the user more con-
trol over the results. Learning large-scale constraints from examples
is challenging and would require a larger training set.
In Section 6.3, we discussed a simple way of combining our

method with an MCMC approach to optimize for an arbitrary cost
function. Such an approach can apply broadly to many different

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:14 • Paul Merrell

goals, but can be slow. And formulating the right cost function is
also an important, difficult task that greatly depends on the type of
application.
Several other methods focus more on large-scale constraints.

Some methods are targeted to specific applications like road net-
works [Vanegas et al. 2012] or plant ecosystems [Pałubicki et al.
2022]. While others discuss constraints that apply across a wide
range of shapes [Dang et al. 2015; Ritchie et al. 2015; Talton et al.
2011]. Ourmethod could be combinedwith some of these approaches
in future work.

9.4 Limitations and Future Work
More work is needed to handle the large set of possible gluing
combinations for 3D shapes. More sophisticated tools are needed to
narrowly focus on parts of the graph hierarchy where production
rules can be found rather than such a broad search.
Section 6 describes how create planar graph drawing through

rejection sampling. This works fine for most grammar rules, but in
some cases it is very difficult to find planar graph drawings. More
sophisticated tools for generating planar graph drawings are needed.

We assume the edges can be stretched enough that forming 360◦
loops without self-intersection is not difficult. But this assumption
breaks down when there are tight restrictions on the edge lengths
such as when the input is a set of connectable tiles. This scenario
is handled well by tile-based techniques [Merrell 2007]. It may be
possible to combine these two approaches.

Our method assumes the input contains exact self-similarity and
does not handle noisy input data. We can bend and deform the
shapes as a post-processing step, but these deformations could be
considered when creating the grammar.

ACKNOWLEDGMENTS
Thank you to Sylvain Lefebvre, Martin Ilčík, Élie Michel, Vladlen
Koltun, and Martin Bokeloh for helpful comments and suggestions.
Thank you to Morgan McGrath and Abigail Chamberlain for illus-
trations used to decorate the 2D results. Patent Pending.

REFERENCES
Daniel G. Aliaga, Paul A. Rosen, and Daniel R. Bekins. 2007. Style Grammars for

Interactive Visualization of Architecture. IEEE Transactions on Visualization and
Computer Graphics 13, 4 (2007), 786–797.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-
Match: A Randomized Correspondence Algorithm for Structural Image Editing.
ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3 (2009).

Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A Connection between
Partial Symmetry and Inverse Procedural Modeling. ACM Trans. Graph. 29, 4 (2010).

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun. 2012. An
Algebraic Model for Parameterized Shape Editing. ACM Trans. Graph. 31, 4 (2012).

Asger Nyman Christiansen and Jakob Andreas Bærentzen. 2012. Generic graph gram-
mar: a simple grammar for generic procedural modelling. In SCCG.

Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures (STOC ’71).
Association for Computing Machinery, New York, NY, USA, 151–158.

George R. Cross and Anil K. Jain. 1983. Markov Random Field Texture Models. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-5, 1 (1983), 25–39.

Minh Dang, Stefan Lienhard, Duygu Ceylan, Boris Neubert, Peter Wonka, and Mark
Pauly. 2015. Interactive Design of Probability Density Functions for Shape Grammars.
ACM Trans. Graph. 34, 6 (2015).

İlke Demir, Daniel G. Aliaga, and Bedrich Benes. 2016. Proceduralization for Editing
3D Architectural Models. In 2016 Fourth International Conference on 3D Vision (3DV).
194–202.

Alexei Efros and Thomas Leung. 1999. Texture synthesis by non-parametric sampling.
In ICCV, Vol. 2. 1033–1038.

Hartmut Ehrig. 1979. Introduction to the algebraic theory of graph grammars. In
Graph-Grammars and Their Application to Computer Science and Biology, Volker
Claus, Hartmut Ehrig, and Grzegorz Rozenberg (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–69.

H. Ehrig, M. Pfender, and H. J. Schneider. 1973. Graph-grammars: An algebraic approach.
In 14th Annual Symposium on Switching and Automata Theory (swat 1973). 167–180.

David Eppstein. 1999. Subgraph isomorphism in planar graphs and related problems.
Journal of Graph Algorithms and Applications 3, 1-3 (1999).

Marek Fiser, Bedrich Benes, Jorge Garcia Galicia, Michel Abdul-Massih, Daniel G.
Aliaga, and Vojtech Krs. 2016. Learning Geometric Graph Grammars. In Proceedings
of the 32nd Spring Conference on Computer Graphics (SCCG ’16). Association for
Computing Machinery, New York, NY, USA, 7–15.

Ashim Garg. 1998. New results on drawing angle graphs. Computational Geometry 9, 1
(1998), 43–82. Special Issue on Geometric Representations of Graphs.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. Texture Synthesis
Using Convolutional Neural Networks (NIPS’15). MIT Press, Cambridge, MA, USA,
262–270.

Maxim Gumin. 2016. WaveFunctionCollapse. https://github.com/mxgmn/
WaveFunctionCollapse

Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, Dani
Lischinski, and Hui Huang. 2020. Inverse Procedural Modeling of Branching Struc-
tures by Inferring L-Systems. ACM Transactions on Graphics 39, 5 (2020), 155:1–
155:13.

Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steven M. Seitz. 2002. Curve
Analogies. In Proceedings of the 13th Eurographics Workshop on Rendering (Pisa,
Italy) (EGRW ’02). Eurographics Association, 233–246.

Takashi Ijiri, Radomír Mêch, Takeo Igarashi, and Gavin Miller. 2008. An Example-based
Procedural System for Element Arrangement. Computer Graphics Forum 27, 2 (2008),
429–436.

Javor Kalojanov, Martin Bokeloh, Michael Wand, Leonidas Guibas, Hans-Peter Seidel,
and Philipp Slusallek. 2012. Microtiles: Extracting Building Blocks from Correspon-
dences. Comput. Graph. Forum 31, 5 (2012), 1597–1606.

Barbara König, Dennis Nolte, Julia Padberg, and Arend Rensink. 2018. A Tutorial on
Graph Transformation. Springer International Publishing, Cham, 83–104.

Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski, and
Tien-Tsin Wong. 2007. Solid Texture Synthesis from 2D Exemplars. ACM Trans.
Graph. 26, 3 (2007).

Aristid Lindenmayer. 1968. Mathematical models for cellular interactions in develop-
ment. II. Simple and branching filaments with two-sided inputs. J Theor Biol 18, 3
(1968), 300–315.

Markus Lipp, Peter Wonka, and Michael Wimmer. 2008. Interactive Visual Editing
of Grammars for Procedural Architecture. ACM Transactions on Graphics (Proc.
SIGGRAPH) (2008).

Han Liu, Ulysse Vimont, Michael Wand, Marie-Paule Cani, Stefanie Hahmann, Damien
Rohmer, and Niloy Mitra. 2015. Replaceable Substructures for Efficient Part-Based
Modeling. Computer Graphics Forum 34 (05 2015).

Chongyang Ma, Li-Yi Wei, Sylvain Lefebvre, and Xin Tong. 2013. Dynamic Element
Textures. ACM Trans. Graph. 32, 4 (2013).

Chongyang Ma, Li-Yi Wei, and Xin Tong. 2011. Discrete Element Textures. ACM Trans.
Graph. 30, 4 (2011).

Andelo Martinovic and Luc Van Gool. 2013. Bayesian Grammar Learning for Inverse
Procedural Modeling. In CVPR. 201–208.

Paul Merrell. 2007. Example-Based Model Synthesis. Symp. Interactive 3D Graphics and
Games (2007), 105–112.

Paul Merrell and Dinesh Manocha. 2008. Continuous Model Synthesis. ACM Trans.
Graph. 27, 5 (2008).

Paul Merrell and Dinesh Manocha. 2010. Example-based curve synthesis. Computers &
Graphics 34, 4 (2010), 304–311.

Paul Merrell and Dinesh Manocha. 2011. Model Synthesis: A General Procedural
Modeling Algorithm. IEEE Transactions on Visualization and Computer Graphics 17,
6 (2011), 715–728.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. 1953. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics 21, 6 (1953), 1087–1092.

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.
Procedural Modeling of Buildings. ACM Trans. Graph. 25, 3 (2006), 614–623.

Wojtek Pałubicki, Miłosz Makowski, Weronika Gajda, Torsten Hädrich, Dominik L.
Michels, and Sören Pirk. 2022. Ecoclimates: Climate-Response Modeling of Vegeta-
tion. ACM Trans. Graph. 41, 4, Article 155 (jul 2022), 19 pages.

Yoav I. H. Parish and Pascal Müller. 2001. Procedural Modeling of Cities (SIGGRAPH
’01). Association for Computing Machinery, New York, NY, USA, 301–308.

John L. Pfaltz and Azriel Rosenfeld. 1969. Web Grammars. In Proceedings of the 1st
International Joint Conference on Artificial Intelligence (Washington, DC) (IJCAI’69).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 609–619.

Viktor Pogrzebacz and Martin Ilčík. 2019. A Graph Grammar for Modelling of 2D
Shapes. In Proceedings of the 23rd Central European Seminar on Computer Graphics.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse

Example-Based Procedural Modeling Using Graph Grammars • 1:15

TU Wien.
Przemyslaw Prusinkiewicz. 1986. Graphical applications of l-systems. In In Proceedings

of Graphics Interface ’86 — Vision Interface ’86. 247–253.
Daniel Ritchie, BenMildenhall, Noah D. Goodman, and Pat Hanrahan. 2015. Controlling

Procedural Modeling Programs with Stochastically-Ordered Sequential Monte Carlo.
ACM Trans. Graph. 34, 4, Article 105 (jul 2015), 11 pages.

Grzegorz Rozenberg. 1997. Handbook of graph grammars and computing by graph
transformation. Vol. 1. World scientific.

Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey on
Procedural Modelling for Virtual Worlds. Computer Graphics Forum 33, 6 (2014),
31–50.

Colin Smith, Przemyslaw Prusinkiewicz, and Faramarz Samavati. 2004. Local Specifica-
tion of Surface Subdivision Algorithms. In Applications of Graph Transformations
with Industrial Relevance. Springer Berlin Heidelberg, Berlin, Heidelberg, 313–327.

Ondrej Stava, Bedrich Benes, Radomir Mech, Daniel Aliaga, and Peter Kristof. 2010.
Inverse Procedural Modeling by Automatic Generation of L-systems. Computer
Graphics Forum 29 (05 2010), 1467–8659.

O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mźch, O. Deussen, and B. Benes. 2014. Inverse
Procedural Modelling of Trees. 33, 6 (2014), 118–131.

George Stiny. 1975. Pictorial and Formal Aspects of Shape and Shape Grammars.
Birkhauser Verlag, Basel.

George Stiny. 1982. Spatial relations and grammars. Environment and Planning B 9
(1982), 313–314.

Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and Radomír
Měch. 2012. Learning Design Patterns with Bayesian Grammar Induction. Association
for Computing Machinery, 63–74.

Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun.
2011. Metropolis Procedural Modeling. ACM Trans. Graph. 30, 2 (2011).

Peihan Tu, Li-Yi Wei, Koji Yatani, Takeo Igarashi, and Matthias Zwicker. 2020. Contin-
uous Curve Textures. ACM Trans. Graph. 39, 6 (2020).

Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul
Waddell. 2012. Inverse Design of Urban Procedural Models. ACM Trans. Graph. 31,
6 (2012).

Luiz Velho. 2003. Stellar Subdivision Grammars. In Proceedings of the 2003 Eurograph-
ics ACM SIGGRAPH Symposium on Geometry Processing (SGP ’03). Eurographics
Association, 188–199.

Michael T. Wong, Douglas E. Zongker, and David H. Salesin. 1998. Computer-Generated
Floral Ornament (SIGGRAPH ’98). Association for Computing Machinery, New York,
NY, USA, 423–434.

Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant
Architecture. ACM Trans. Graph. 22, 3 (2003), 669–677.

Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter Wonka.
2014. Inverse Procedural Modeling of Facade Layouts. ACM Trans. Graph. 33, 4
(2014).

Rundi Wu and Changxi Zheng. 2022. Learning to Generate 3D Shapes from a Single
Example. ACM Trans. Graph. 41, 6, Article 224 (nov 2022), 19 pages.

Yi-Ting Yeh, Katherine Breeden, Lingfeng Yang, Matthew Fisher, and Pat Hanrahan.
2013. Synthesis of Tiled Patterns Using Factor Graphs. ACM Trans. Graph. 32, 1
(2013).

Allan Zhao, Jie Xu, Mina Konaković Luković, Josephine Hughes, Andrew Speilberg,
Daniela Rus, and Wojciech Matusik. 2020. RoboGrammar: Graph Grammar for
Terrain-Optimized Robot Design. ACM Transactions on Graphics (TOG) 39, 6 (2020),
1–16.

A SPECIAL CASES
Infinitely-Long Lines. We may want the example and output shapes
to contain lines that do not end. For example, a line for the ground
extends indefinitely. Our method generates shapes within a finite
space. We can treat the border of the space as part of the input shape.
Lines that extend infinitely far are modeled as lines that intersect
this border.
Connected Shapes. We may want the output graph to be fully

connected. This can be done by (1) not allowing starter rules to be
used more than once, and (2) disallowing rules that use multiple
spliced graphs.

No Loops.We also may want our output to not contain loops such
as for streams and trees. This can be done by (1) disallowing loop
gluing and (2) disallowing rules that use multiple spliced graphs.

B DECORATED GRAPH DRAWINGS
Decorations can be added to the graph drawings as an optional post-
processing step. Adding decorations like this is a common practice
in many procedural modeling techniques [Müller et al. 2006; Wong
et al. 1998]. This allows us to use a simplified representation that
acts as a proxy for a more detailed final result. The user can specify
images or geometry that should be added or tiled.
Bending. The user can also allow some edges to bend. To bend

the edges, we traverse each edge in the graph, divide it into small
segments and bend each segment by a random angle. The result is
a new bent graph drawing. But this is just an intermediate solution
since the bending can break some of the cycles in the drawing. The
final positions are found using linear least squares. We find the
optimal positions such that the change in position between two
adjacent points matches the bent drawing as closely as possible
while preserving all cycles.

C NO COMPLETE DESCENDANTS EXAMPLE
Following the discussion in Section 5.6, we wish to show that a
graph has no complete descendants. Consider the primitives be-
low left and the graph below right. We will show that the graph
𝑦01∨𝑥01∧𝑥02𝑥02∧ has no complete descendants:

Note that the half-edge 𝑦01 is pointed in the −𝑦 direction and is
adjacent to the faces labeled 0 and 1. A graph can be completed if
there is some sequence of gluing operations that can transform the
boundary string to ∧. This is impossible. Consider the half-edge 𝑦01.
There is no way to loop glue it. Here is a decision tree showing the
result of every possible graph gluing operation starting with 𝑦01:

Fig. 12. A decision tree of possible gluing operations starting with 𝑦01.

No matter which choice we take we never get any closer to com-
pleting the graph. Gluing has the effect of doing a string replacement.
We keep trying to replace the first half-edge, but no matter which
decision we make we end up back with 𝑦01 as the first half-edge
and a turn added in the wrong direction. Every path down the de-
cision tree cycles: 𝑦01 → 𝑥11 → 𝑥12 → ∨𝑦01∧ → ∨𝑦01∧ without
us getting any closer to completing the graph. It is impossible to
complete the graph 𝑦01∨𝑥01∧𝑥02𝑥02∧.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Goal: Local Similarity
	3.2 Overview
	3.3 Notation & Representation

	4 Finding Locally Similar Graphs
	4.1 Disassembly: Cutting Into Primitives
	4.2 Assembly: Gluing Primitives Together
	4.3 The Graph Hierarchy
	4.4 Complete Graphs

	5 Graph Grammars
	5.1 Outline
	5.2 How this Algorithm Works
	5.3 Finding a Rule to Reduce a Graph
	5.4 Reducing a Graph with Its Descendants
	5.5 One-half-edge Graphs, Stubs
	5.6 No Complete Irreducible Descendants
	5.7 The Growth of the Graph Hierarchy

	6 Using the Graph Grammar
	6.1 Propose an Angle Graph
	6.2 Propose a Graph Drawing
	6.3 Accept or Reject Proposal

	7 Extension to 3D Shapes
	8 Results
	9 Discussion
	9.1 Comparison
	9.2 Practical Utility
	9.3 User Control
	9.4 Limitations and Future Work

	Acknowledgments
	References
	A Special Cases
	B Decorated Graph Drawings
	C No Complete Descendants Example

