
Comparing Model Synthesis and Wave Function Collapse

Paul Merrell
July 28, 2021

1 Summary
This document directly compares Model Synthesis to Wave Function Collapse (WFC) by analyzing the algorithms
and through a series of experiments. Model synthesis was created by Merrell in 2007 1. WFC was created by Gumin
in 2016. There are a few differences between them, but they are small. It is more appropriate to classify them as two
versions of the same algorithm rather than two different algorithms. We are really comparing the original version of
model synthesis to the WFC version of model synthesis. But for simplicity, we just call these model synthesis and
WFC.

The results of this analysis show two things: (1) model synthesis and WFC produce similar results for small outputs.
The results look very similar and the computation time is also similar. (2) WFC has great difficulty generating some
large textures and models. It repeatedly fails. Model synthesis can generate in a few seconds what WFC fails to
generate in over 20 minutes.

2 Differences
The two methods are very similar. Both contain a list of possible labels can be assigned to each cell in the grid. (In
WFC, this is called the wave function.) In both cases, we start with every possible label in every cell. In both cases, we
narrow down the possible labels by choosing a cell within the grid, picking one of the possible labels, and eliminating
the rest. In both cases, we propagate this choice and eliminate labels that no longer agree with it. In both cases, we
continue until all grid cells have one label.

There are two differences between them:

2.1 Order of Picking Cells
The first difference is in the step where we choose a cell and pick a label. The cells are chosen in a different order.
Model synthesis sweeps through the grid in scanline order. WFC chooses the lowest entropy cell. Figures 2 - 10 show
images generated with and without this change. This has little to no effect on the quality of the results.

The order can also affect the speed of the algorithm. Both methods can fail and the order may affect the failure rate.
For small textures and model, the order has little impact. The failure rate is low in either case. But for some large
textures, picking the lowest entropy cell greatly increases the failure rate. This is the main reason why WFC fails so
much more in Table 1. The difference is huge for some inputs. It does not happen for every input, but model synthesis
can generate in seconds what WFC fails in generate in over 20 minutes. I do not know how long WFC would take
because it never finishes.

2.2 Modifying in Blocks
The second difference is that WFC does not implement an important part of the model synthesis algorithm. This is the
part where we modify the model in smaller pieces instead of all at once. This is a complicated issue that is discussed
in detail in my dissertation [Merrell 2009] (pages 41 - 65). In Theorem 3.3.4, I show that for some inputs this is an
NP-hard problem. For some inputs, it is not NP-hard and the algorithm works flawlessly (Theorem 3.3 .6). So this
issue only applies to some inputs. For those inputs, the problem gets exponentially more difficult as the size of the
output increases. This means that if you try to generate the whole model all at once, the chance of success decreases
rapidly once the output reaches a certain size. Model synthesis solves this problem by breaking the problem into
smaller pieces. Because WFC does not implement this part it cannot generate large outputs in these cases. This is
called modifying in blocks.

Modifying in blocks is essential for generate large complex models like the one in Figure 1. WFC cannot generate
large models like that in a reasonable amount of time.

WFC has mostly focused on 2D textures rather than 3D model. (The original WFC code only works on 2D inputs, but

1To be completely accurate, model synthesis was first created in 2005, but not shared publicly until a paper published in 2007 [Merrell 2007].

Figure 1: 3D Model generated by model synthesis.

other projects have extended it into 3D). 2 D inputs are less challenging. The tiles are not as interconnected and the
outputs are smaller. The large textures in Table 1 are not especially large compared to many of the 3D models. The
examples in [Merrell 2009] ranged from 9K to 72K voxels. Modifying in blocks is more important for generating 3D
models because they are more difficult.

As Table 1 shows model synthesis is better at generating large textures. This is for two reasons: because of the order
it picks the cells and because it modifies in blocks. Both contribute to its success in Table 1. The order of the cells is
more important. Modifying in blocks is not even necessary for most of the examples.

3 Propagation AC-3 and AC-4
Both methods formulate synthesis as a constraint satisfaction problem (CSP) which is solved using an Arc Consistency
algorithm. The AC-3 algorithm [Mackworth 1977] and the AC-4 algorithm [Mohr and Henderson 1986] both produce
the same results meaning they both remove the same set of labels. But the AC-4 algorithm is faster especially when
there are many labels. [Wallace 1993] says that AC-3 is faster for most CSPs because AC-4 requires a preprocessing
step in which the support for each neighbor is calculated. However, model synthesis is structured in a way that makes
this part easy. Every pair of neighbors is the same. AC-4 is faster.

4 Timing
Tables 2-3 show the timings for the two methods on my machine. The results show that model synthesis is not as fast
as WFC. By far the slowest part of both methods is the propagation step. Both methods use the same AC-4 algorithm
and the same set of labels and constraints. It is difficult to tell what is causing the difference. The different cell
order (lowest entropy vs scanline) has little effect. The methods are implemented in different programming languages.
Subtle difference in how the algorithm is implemented can affect memory access speeds and other factors.

5 Overlapping Tiles
Model synthesis generated 2D textures using image tiles from the beginning. But these tiles did not overlap each other.
Gumin introduced the idea of using overlapping image tiles [Gumin 2016]. This has several benefits. The tiles can
easily be computed from an image. And when you use overlapping tiles, the result is more tightly constraint to look
like the input. The model synthesis code now support overlapping tiles. This requires a preprocessing step, but no
other changes to the algorithm. The same algorithm works for overlapping tiles, non-overlapping tiles, and 3D model

pieces.

It is also important to understand how model synthesis / WFC compares to other texture synthesis algorithms. This is
discussed in greater detail in [Merrell 2009], but I will summarize the main points here. Many of the textures shown
in Figures 2 - 10 could also be generated by other state-of-the -art texture synthesis algorithms. The main advantage
that model synthesis / WFC has is it is better at forming closed loops. On the other hand, if you used a photograph
as an input texture, many texture synthesis algorithms would work fine, but model synthesis / WFC would not. This
is because they require the input image to be self-similar. In most photographs, the image patches all have slightly
different colors. Model synthesis and WFC require pixel art style images that only use a few colors.

6 Extensions
The WFC code has been adapted and extended to many additional use cases and applications. I will not attempt to list
them here. Note that these extensions could also be applied to model synthesis.

7 Conclusion
Model synthesis and WFC use nearly the same algorithm and produce similar results. WFC picks cells in a different
order and does not modify in blocks. This causes the algorithm to fail more on some large models. Gumin introduced
the idea of using overlapping tiles as an input which has several benefits.

References
GUMIN, M., 2016. Wave function collapse, https://github.com/mxgmn/wavefunctioncollapse.

MACKWORTH, A. K. 1977. Consistency in networks of relations. Artificial Intelligence 8, 1, 99–118.

MERRELL, P. 2007. Example-based model synthesis. In I3D ’07: Symposium on Interactive 3D graphics and games,
ACM Press, 105–112.

MERRELL, P. 2009. Model Synthesis. PhD thesis, University of North Carolina at Chapel Hill.

MOHR, R., AND HENDERSON, T. C. 1986. Arc and path consistency revisited. Artificial Intelligence 28, 2, 225–233.

WALLACE, R. J. 1993. Why ac-3 is almost always better than ac-4 for establishing arc consistency in csps. In
Proceedings of the 13th International Joint Conference on Artifical Intelligence - Volume 1, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, IJCAI’93, 239–245.

width x Model Syn WFC Model Syn WFC WFC WFC
Name height Total (s) Total (s) Synthesis (s) Synthesis (s) Success Rate Trials
Summer 100 x 100 3.741 116.3 0.969 114.5 0.2 % 1,000
Summer 200 x 200 25.144 – 13.869 > 1,354 0 % 1,000
Castle 100 x 100 0.628 – 0.557 > 1,365 0 % 10,000
Castle 200 x 200 4.683 – 4.399 > 1,365 – –
Knot Dense 100 x 100 0.310 16.04 0.156 15.94 2.7% 1,000
Knot Dense 200 x 200 1.758 – 1.173 > 1,877 0 % 1,000
Knot TE 100 x 100 0.210 – 0.098 > 882 0 % 10,000
Knot TE 200 x 200 1.086 – 0.687 > 882 – –
Knot T 100 x 100 0.180 2.60 0.071 2.56 10.4 % 1,000
Knot T 200 x 200 0.909 – 0.532 > 1,253 0 % 1,000
Knot CE 100 x 100 0.868 9.80 0.772 9.76 1.8 % 1,000
Knot CE 200 x 200 1.055 – 0.673 > 787 0 % 1,000
Rooms 100 x 100 0.557 1.30 0.544 1.29 45.9 % 1,000
Rooms 200 x 200 4.136 200.8 4.049 200.7 1.8 % 1,000
Red Dot 200 x 200 8.205 – 8.194 > 7,061 0 % 10,000
Shew1 200 x 200 15.603 – 15.593 > 1,757 0 % 1,000
Cat 400 x 400 279.9 – 279.8 > 14,802 0 % 1,000

Table 1: This shows the results for large textures. All times are in seconds. The total time is the average time to
successfully compute one texture of size width x height. The synthesis time excludes the time for reading the input
and encoding the image files. The success rate gives the fraction of attempts in which WFC was successful. Model
synthesis is almost always successful. Whenever the failure rate is high, you can decrease the size of the block you are
modifying and then it will succeed. Several entries for WFC are blank because no solution was found after waiting a
long time. In these cases, the WFC Synthesis column shows the time that was spent. This is a lower bound as we do
not know how long it would take. WFC trials is the number of attempts that were made.

Model Syn (s) WFC (s)
Parse Input 0.067 0.366
Synthesis 0.456 0.321
Generate Output 0.985 0.432
Total 1.508 1.119

Table 2: The time it took in seconds to generate all of the 36 small textures shown in Figure 3 - 6. The timings are
separated into three parts. First, parsing the input files and settings up the input. Second, actually running the synthesis
algorithm. Third, using the result to encode all the pixels into an image file.

Model Syn (s) WFC (s)
Parse Input 3.545 0.386
Synthesis 32.161 7.699
Generate Output 0.081 0.104
Total 35.787 8.186

Table 3: The time it took in seconds to generate all of the 54 small textures shown in Figure 2. The timings are divided
into the same parts described in Table 2. These use overlapping tiles.

Figure 2: A comparison of images generated using model synthesis and WFC. The top row in each pair was generated
by model synthesis. The bottom row by WFC. These all use overlapping image tiles. The results look similar.

Figure 3: Textures on the left were generated by model synthesis. Textures on right by WFC. The results look similar.

Figure 4: Textures on the left were generated by model synthesis. Textures on right by WFC. The results look similar.

Figure 5: Textures on the left were generated by model synthesis. Textures on right by WFC. The results look similar.

Figure 6: Textures on the left were generated by model synthesis. Textures on right by WFC. The results look similar.

figures/large WFC/Castle.png

Figure 7: Textures on the left were generated by model synthesis. Textures on right by WFC. The results look similar.

figures/large WFC/Knots TE.png

Figure 8: Textures on the left were generated by model synthesis. Textures on right by WFC. One box is empty
because WFC was unable to generate that texture.

Figure 9: Textures on the left were generated by model synthesis. Textures on right by WFC.

figures/overlapping large WFC/01 RedDot0.pngfigures/overlapping large WFC/01 RedDot1.png

figures/overlapping large WFC/01 Shew11.pngfigures/overlapping large WFC/01 Shew11.png

figures/overlapping large WFC/01 Shew11.pngfigures/overlapping large WFC/01 Shew11.png

Figure 10: Textures on the left were generated by model synthesis. Textures on right are empty since WFC failed to
generate them.

