
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Model Synthesis: A General Procedural
Modeling Algorithm

Paul Merrell and Dinesh Manocha
University of North Carolina at Chapel Hill

Abstract—We present a method for procedurally modeling general complex 3D shapes. Our approach can automatically generate
complex models of buildings, man-made structures, or urban datasets in a few minutes based on user-defined inputs. The algorithm
attempts to generate complex 3D models that resemble a user-defined input model and that satisfy various dimensional, geometric,
and algebraic constraints to control the shape. These constraints are used to capture the intent of the user and generate shapes that
look more natural. We also describe efficient techniques to handle complex shapes, highlight its performance on many different types
of models. We compare model synthesis algorithms with other procedural modeling techniques, discuss the advantages of different
approaches, and describe as close connection between model synthesis and context-sensitive grammars.
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1 INTRODUCTION

C REATING 3D digital content for computer games,
movies, and virtual environments is an important

and challenging problem. It is difficult because objects
in the real-world are complex and have widely varying
shapes and styles. Consider the problem of generating
a realistic 3D model of an outdoor scene. Different
applications may require many different types of models
such as buildings, oil platforms, spacecrafts, roller coast-
ers, and other man-made structures. Overall, geometric
modeling is a creative and artistic process. However,
current modeling systems can be cumbersome and the
users often spend a lot of time performing routine and
tedious tasks instead of making creative decisions.

Despite extensive work in geometric modeling for
over four decades, it remains a time-consuming task.
Learning how to use current geometric modeling tools
can require significant training and even when the tools
are mastered creating complex models is still difficult.
With state of the art 3D CAD and modeling tools, the
user can create simple geometric primitives and modify
them using various transformations and geometric op-
erations. Modeling complex environments such as cities
or a landscapes requires the creation and manipulation
of large numbers of primitives and can take many hours
or days [31].

Many objects and environments contain repetitive and
self-similar structures which can be modeled more eas-
ily using procedural modeling techniques. Procedural
modeling techniques are designed to automatically or
semi-automatically generate complex models. These in-
clude techniques based on shape grammars, scripting
languages, L-systems, fractals, solid texturing, etc. These
approaches have been used to generate many complex
shapes, but each method is mainly limited to a specific
class of models or requires considerable user input or

guidance.
In this paper, we address the problem of generating

complex models using model synthesis. Model synthesis
is a simple technique [26], [28] proposed to automatically
generate complex shapes. The model synthesis algorithm
accepts a simple 3D shape as an input and then gener-
ates a larger and more complex model that resembles
the input in terms of its shape and local features. An
example of this is shown in Figure 1.

Different procedural modeling techniques require
varying degrees of user input. Using a high degree
of user input has both advantages and disadvantages.
Without sufficient user input, the result generated by a
procedural modeling method may be too random and
some parts of the generated 3D model may turn out to be
different from the user’s original intent. With too much
user input, the time required to adjust and manipulate
the model could overwhelm the user. Ideally, the user
could choose to provide any amount of input and the
algorithm should be able to adjust accordingly. The user
input can often be specified in the form of a set of
constraints on the output. Any output that satisfies all of
the user’s constraint is acceptable. Prior work in model
synthesis [28] uses a minimal amount of user input in
the form of a single adjacency constraint and may not
give the user enough control over the result.

We present a novel model synthesis algorithm which
enables the user to specify geometric constraints that
give the user greater control over the results. We use
dimensional, incident, algebraic, and connectivity con-
straints that have been used in CAD/CAM, geometric
modeling, and robotics. The constraints are specified be-
tween a set of geometric objects and their features. These
include spatial and logical constraints such as incidence,
tangency, perpendicularity, and metric constraints such
as distance, angle, etc. We use these constraints to cap-
ture the user’s intent, to prevent objects from becoming
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(a) Example Model (b) Generated Model

Fig. 1. (a) From an example model specified by the user, (b) a model of several oil platforms is generated automatically
by our algorithm. The shape of the output resembles the input and fits several dimensional and connectivity constraints.
The height of the platform and the length and width of the beams are constrained to have a particular size. The shapes
are constrained to be in four connected groups. Our algorithm can generate the new model in about half a minute.

unnaturally large or small, to generate more complex
shapes, and to manage the objects’ spatial distribution.

In order to satisfy the constraints, we represent local
neighborhoods of the objects using Boolean expressions.
The Boolean expressions are used to compute how dif-
ferent vertices, edges and faces of the synthesized model
connect together. Furthermore, we present a scheme to
incorporate dimensional and algebraic constraints into
our model synthesis algorithm.

Like most procedural modeling techniques, our al-
gorithm is primarily designed to work on objects that
are self-similar. We demonstrate its ability to generate
models of buildings, man-made structures, city streets,
plumbling, etc.

A preliminary version of this paper appeared in [29].
We also compare model synthesis to other procedural
modeling techniques which are often based on using
grammars. We show that model synthesis is particularly
useful for generating architectural shapes, but has dif-
ficulty with some curved and organic shapes. We also
establish a close relationship between contex-sensitive
grammars and model synthesis by showing that a prob-
lem in one domain can be reduced to a problem in the
other domain.

The rest of the paper is organized as follows. We give
a brief survey of prior work on procedural modeling and
geometric constraint systems in Section 2. Section 3 gives
a brief overview of model synthesis and the constraints
used by our algorithm. The overall constraint-based
algorithm is described in Section 4 and we highlight its
performance in Section 5. We analyze its performance
and discuss its limitations in Section 6. We compare it to
related work on procedural modeling in Section 7.

2 RELATED WORK

In this section, we briefly survey related work on proce-
dural modeling, texture synthesis, and model synthesis.

2.1 Procedural Modeling

Many procedural modeling techniques have been de-
veloped over the last few decades. These techniques
are very diverse, but most of them are targeted to-
wards modeling a specific type of object or environment.
Techniques based on fractal geometry achieved success
modeling natural landscapes [13], [23], [32].

There is a long history of modeling plants procedu-
rally. Many plant modeling techniques use a formal
grammar call an L-system. L-systems were proposed
by Lindenmayer as a general framework for describing
plant growth and plant models [22], [36]. An L-system
is a parallel rewriting system. L-systems can be extended
to consider how plants interact with their environment
as they grow [25]. Other techniques use sketches [8],
photographs [38] or positional information [37] to
influence the shape of the plant models.

Many procedural techniques are designed specifically
for modeling urban models [45], [43]. Like many plant
modeling techniques, some urban modeling techniques
use L-systems. L-systems have been used to generate
road networks and buildings on land between the roads
[34]. Other grammars have been introduced specifically
for modeling architecture. Shape grammars were intro-
duced as a tool for analyzing and designing architecture
[40], [12]. Wonka et al. introduced a related group of
grammars called split grammars [49]. Split grammars
operate by splitting shapes into smaller components and
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can generate highly detailed models of architecture. Split
grammars were further developed by Müller et al. [31].
They developed shape operations for mass modeling
and for aligning many parts of a building’s design
together.

Some techniques focus more on the 2D layouts of cities
than on the 3D shapes of the buildings. Chen et al. [7]
allow the users to edit a city’s street layout interactively
using tensor fields. Aliaga et al. [2] generate street lay-
outs using an example-based method. A related area of
research is urban simulation which seeks to understand
how various factors influence a cities development and
growth over time [41], [44]. Aspects of urban simulation
have been used in procedural modeling to produce more
realistic models of cities [46].

Other techniques are designed to model smaller struc-
tures. Legakis et al. [21] propose a method for auto-
matically embellishing 3D surfaces with various cellular
textures including bricks, stones and tiles. Cutler et al.
[9] developed a method for modeling layered, solid
models with an internal structure. Another method has
been developed to model truss structures by optimizing
the locations and strengths of beams and joints [39].
Pottmann et al. [35] have developed algorithms based
on Discrete Differential Geometry that determine how
to arrange beams and glass panels so they form in the
shape of a given freeform surface and satisfy various
geometric and physical constraints.

Another way to model objects is to combine to-
gether parts of existing models interactively [14]. In this
method, the user can search through a large database
of 3D models to find a desired part, then cut the part
out from the model, and stitch various parts together to
create a new object.

2.2 Modeling with Constraints
There is rich literature in solid modeling on designing
shapes that satisfy various geometric, parametric or
variational constraints [6], [1]. There is also considerable
work on solving geometric constrained systems and
some excellent surveys are available [16], [18]. Geometric
constraints are widely used in computer aided engineer-
ing applications [15] and also arise in many geometric
modeling contexts such as virtual reality, robotics, molec-
ular modeling, computer vision, etc. These constraints
are used to incorporate relationships between geometric
entities and features and thereby capture the intent of
the designers. Our formulation of various constraints is
similar, though our approach to satisfy these constraints
during model synthesis is different. Besides geometric
constraints, silhouette-based constraints are also used
to model freeform objects using sketch-based interfaces
[17], [33].

2.3 Texture Synthesis and Model Synthesis
The model synthesis algorithm itself has much in com-
mon with texture synthesis. The field of texture synthesis

has seen a proliferation of new algorithms and new ideas
over the past decade. This section gives an overview
of the most relevant developments and explains their
relationship to model synthesis. A more comprehensive
survey is given in [47].

Many texture synthesis algorithms were influenced by
a seminal paper written by Efros and Leung [11]. Their
algorithm is remarkably simple. It generates textures by
adding pixels individually by finding a neighborhood
that matches the neighborhood around the insertion
point. There are several ways to accelerate texture syn-
thesis such as by adding the pixels in a particular order
[48], by adding patches of texture rather than individual
pixels [10], [20], or by exploiting spatial coherence [3].

Texture synthesis has also been used to generate tex-
ture maps directly onto curved surfaces [42]. Texture
synthesis has been extended into three dimensions is
to create solid textures [19]. Texture synthesis has also
been used to generate geometric textures [4], [51] which
combine elements of texture mapping and modeling.
They are used like texture maps to apply patterns to
objects, but the patterns change the shape of the object
to create effects like bumps or dimples or chain mail.

Texture synthesis was the inspiration behind model
synthesis. Model synthesis was initially proposed by
Merrell [26] and later extended to handle non-axis-
aligned objects [28]. Both model and texture synthesis are
designed to take a small sample as an input example and
generate a larger result that resembles the input example.

Model synthesis relies on finding symmetric patterns.
Many methods have been developed to find patterns in
3D models [24]. Bokeloh et al. [5] automatically identify
symmetries within objects and use these symmetries to
cut objects into pieces. By editing these pieces, a shape
grammar is derived.

3 ALGORITHM

In this section, we give a brief overview of model
synthesis and the constraints used in the algorithm.

3.1 Notation

Points and vectors are written in bold face, x ∈ R3.
Lower-case letters not in bold face are generally used to
denote scalar variables, but there are a few exceptions.
The variable h is used to denote the set of points within
a half-space. The upper-case letters, E and M are used
to denote the models. The model E is the input example
model provided by the user. The model M is the new
model generated by the algorithm. Each model is a set
of closed polyhedra. The models E and M and the
half-spaces hi are represented in two different ways. A
half-space h1 could be represented as a set of points
h1 or as the characteristic function of that set h1(x)
where h1(x) = 1 if x ∈ h1, otherwise h1(x) = 0. The
complement of the half-space h1 is written as either the
set hC1 or the function ¬h1(x).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

3.2 Background

Our algorithm builds upon earlier work in model syn-
thesis. In this section, we give a brief overview of a previ-
ous model synthesis algorithm [28]. The user provides an
example model as the input. The example model is a set
of polygons that form closed polyhedral objects. Model
synthesis generates a new model M that resembles the
example model E. In earlier work, it was assumed that
the input was a single object, but we allow multiple
objects in E. Let n be the number of different objects
in E. We consider the example model to be a function
E(x) of a point in space x where E(x) = k if x is inside
an object of type k where 1 ≤ k ≤ n. If x is not inside
any of the objects, then E(x) = 0. The function M(x) is
similarly defined for the new model M .

In the prior model synthesis algorithm, the output
model only needed to satisfy a single constraint called
the adjacency constraint. The adjacency constraint is
defined on neighborhoods. A neighborhood around a
point is just a set of points near it. In Figure 2, the
neighborhoods surrounding the points a, b, c, d, and e
exactly match the neighborhoods surrounding the points
a′, b′, c′, d′, and e′. The neighborhood around a point x
matches the neighborhood around the point x′ if there
exists ε > 0 such that for all vectors δ where ||δ|| < ε

M(x+ δ) = E(x′ + δ). (1)

The adjacency constraint states that for every point x
there exists a point x′ whose neighborhood matches ac-
cording to equation 1. This constraint ensures that every
neighborhood of of M is the same as a neighborhood of
E. A similar constraint is used in [5].

Figure 2 gives an overview of our approach. Starting
with the input example shape E(x) shown in Figure 2(b),
the algorithm creates sets of parallel lines (or parallel
planes in 3D) as shown in Figure 2(c). The output shape
is generated on these sets of parallel lines. One possible
output shape is shown in Figure 2(d). The lines (or
planes in 3D) intersect at vertices.

Each vertex has a set of acceptable neighborhoods that
match the input according to Equation 1. The vertex
could be outside M(x), inside it, or on its boundary
which could be an edge, a face, or a vertex of the output
shape. Each possible neighborhood is represented by a
different possible state. One state might be a neighbor-
hood which is on a face. A neighborhood on a face
that has a different normal would be a different state.
There are other states for neighborhoods on edges or
vertices. Every neighborhood that is different according
to Equation 1 is a different possible state. Several states
are shown in Figures 3 and 4. Two states can be at
adjacent vertices in Figure 2 if they have similar features
along the direction in which they connect. For example,
Figure 4 shows three states that could be beneath a
particular state because they all share a vertical magneta
edge that can connect the two states. Adjacent states

which do not share common features conflict because
they cannot connect together.

After creating the planes, the next part of the algorithm
is to assign states to each vertex without assigning two
adjacent states that conflict. We keep track of a list
of every possible state that could be assigned to each
edge and each vertex. This list is long initially, but it
shortens as we assign more states. Each assigned state
is associated with a set of states that could be adjacent
to it. Neighboring states outside this set conflict with
the assigned state and get removed from the list. This
removal may, in turn, expose other conflicting states
which are also removed. This process is repeated until no
more states need to be removed. We continue to assign
states to each vertices and then update the list of possible
states until every vertex has been assigned a single state.

3.3 Geometric Constraints

Our approach uses several geometric constraints to cap-
ture the user’s intent and to control the shape of the
synthesized model. To describe different constraints, we
borrow terminology from the solid modeling and CAD
literature [1]. Figure 2(a) provides an overview of how
the various constraints affect the algorithm.

Dimensional Constraints: Many objects have prede-
termined dimensions. Cars, road lanes, and chairs have
a certain width. Stair steps and building floors have a
certain height. Bowling balls and pool tables have a pre-
determined size. Without constraining the dimensions of
the objects, the synthesis algorithm could easily generate
roads too narrow to drive across, steps too tall to walk
up, ceilings too close to the ground, and bowling balls
too big to bowl. Dimensional constraints allow the user
to fix the dimensions of the objects so that they are
always sized realistically.

Algebraic Constraints: Some objects do not have pre-
determined dimensions, but instead must satisfy an alge-
braic relationship between their dimensions. An example
might be that an object’s length must be twice its height.
These constraints are especially useful for curved objects.

Incidence Constraints: Prior model synthesis tech-
niques are limited to shapes which have only trihedral
vertices. Trihedral vertices are vertices which are incident
to three faces. As a result, there are many simple shapes
such as a pyramid or an octahedron that previous model
synthesis techniques cannot generate. To generate such
shapes, we use additional incidence constraints.

Connectivity Constraint: Many objects look unnatural
if they are not connected to a larger whole. One example
is a road network. An loop of road looks unnatural if
it is isolated from the all the other roads. All of the
roads in a city are usually connected in some way. This
defines a connectivity constraint which can be used to
eliminate the possibility of isolated loops and create fully
connected roads.

Large-Scale Constraints: The user might have a floor
plan or a general idea of what the model should look
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(a) Flowchart (b) Example Shape E(x) (c) Parallel lines diving up the
plane.

(d) Acceptable Output Shape M(x)

Fig. 2. (a) Overview flowchart showing how the constraints affect the algorithm. (b) From the input shape E, (c) sets
of lines parallel to E intersect to form edges and vertices. (d) The output shape is formed within the parallel lines. For
each selected point a, b, c, d, and e in M , there are points a′, b′, c′, d′, and e′ in the example model E which have
the same neighborhood. The models E and M contain two different kinds of object interiors shown in blue and brown.
The brown object’s width is constrained to be one line spacing width. The width of the blue object is not constrained.
The objects are also constrained to be fully connected.

like on a macroscopic scale. For example, the user might
want to build a city with buildings arranged in the shape
of a circle or a triangle. The user can generate such a
model by using large-scale constraints. These constraints
are specified on a large volumetric grid where each voxel
records which objects should appear within it.

4 CONSTRAINT-BASED APPROACH

In this section, we present our constraint-based synthesis
algorithm.

4.1 Overview

We first discuss incidence constraints that specify that
more than three faces are incident to a vertex in or-
der to generate non-trihedral vertices. To add incidence
constraints, we need a new way to describe the neigh-
borhoods around non-trihedral vertices. We use Boolean
expressions as explained in Section 4.2. These represen-
tations are used to determine which neighborhoods can
be adjacent to one another. The vertices of the output
are constructed where several planes intersect. Vertices
incident to four faces require that four planes intersect
which requires the planes to be spaced a particular way
described in Section 4.4.

The Boolean expressions describing the states can
also be used to apply dimensional constraints to the
synthesized model. By disallowing any states that would
permit the objects to stretch beyond its fixed dimen-
sions, dimensional constraints are created as described
in Section 4.5. Connectivity constraints are imposed in
Section 4.6 by changing the order in which the states are
assigned. Large-scale constraints are applied by chang-
ing the probabilities of the states that are assigned to
each vertex, as described in Section 4.7. An algebraic
constraint is described in Section 4.8.

Fig. 3. One edge and six vertex states are described
using Boolean expressions of three half-spaces. In our al-
gorithm, every neighborhood is represented by a Boolean
expression.

4.2 Representing Neighborhoods with Boolean Ex-
pressions

In this section, we discuss how to describe states us-
ing Boolean expressions. The terms Boolean expression,
neighborhood, and state can all be used interchangeably.
The Boolean expressions are simply used to describe the
neighborhoods. Our ultimate goal is to assign a neigh-
borhood to each vertex of Figure 2(c). Each vertex has a
set of possible neighborhoods that could be assigned to
it and these are called states.

The incidence and the adjacency constraints are con-
cerned with the neighborhoods surrounding points. To
impose the adjacency constraint at non-trihedral vertices,
we need a way to describe the neighborhoods there.
Neighborhoods are represented using half-spaces which
are related to the faces of the polyhedra. Every face
has a plane that is parallel to it and that intersects the
origin. This plane divides space into two half-spaces.
The face’s normal points into one half-space and away
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from the other. Let us associate each face with the half-
space that its normal points away from. These half-
spaces can be used to describe every neighborhood of the
polyhedra using a combination of Boolean operations.
A few examples of these combinations are shown in
Figure 3. For every point p in E, there exists a Boolean
expression that will produce a neighborhood identical
to p. This set of Boolean operations is found using the
following method:

1) If p is on a face and hi is the half-space associated
with the face, then hi alone produces a neighbor-
hood that is identical to p. If p is on a face whose
normal points in the opposite direction, then hCi
describes the neighborhood around p.

2) If p is on an edge whose two adjacent faces are
associated with the two half-spaces hi and hj , then
the neighborhood around p is described by hi ∪hj
if the edge has a reflex angle and hi ∩ hj if it does
not.

3) If p is on a vertex, then the procedure for comput-
ing its neighborhood’s Boolean expression is more
complex. Every face that intersects p is on a plane.
Let us take all the faces that intersect p and use
all of their planes to divide the space into cells. An
example of this is shown in Figure 5. Each cell is the
intersection of several half-spaces. Since the planes
all intersect p, every cell has points in the neighbor-
hood of p. For each cell, we determine if the points
within the cell and within the neighborhood of p
are inside or outside the polyhedron E. We take
the union of all cells which have points inside the
polyhedron and this is the Boolean expression that
represents the neighborhood surrounding p. Each
cell is the intersection of several half-spaces and so
the neighborhood at p is represented as a union
of intersections. These expressions can often be
simplified using familiar rules of Boolean algebra
such as (hi∩hj)∪(hi∩hCj ) = hi. Simplified Boolean
expressions for various states are shown in Figures
3 and 5.

This method gives us a Boolean expression describing
how a polyhedra intersects a neighborhood at any point
p. However, more than one polyhedra might intersect
at the same point. For example, see the points b and e
of Figure 2(d). When multiple objects intersect, we can
compute a Boolean expression for each object and then
combine all the expressions into one. Let k1 and k2 be
two object interiors and let b1 and b2 be two Boolean
expressions. The notation k1 · b1 + k2 · b2 will be used to
describe a neighborhood which contains the object k1 at
the points b1 and object k2 at b2. For example, 1·h1∩hC2 +
3 · h2 describes a neighborhood where an edge h1 ∩ hC2
of object 1 touches a face of h2 of object 3.

4.3 Evaluating Boolean Expressions along Edges
In the previous section, we discuss how to describe every
neighborhood or every state as a Boolean expression, but

Fig. 4. We can evaluate the states to figure out which
states can be adjacent to them in various directions. This
shows the state (h1 ∧ h2) ∨ (h1 ∧ h3) evaluated in six
directions. We assume that x23 points down and is inside
the h1 half-space so that h1(x23) = 1 and h1(−x23) = 0.
In the x23 direction, the state (h1∧h2)∨(h1∧h3) evaluates
to h2 ∨ h3 which is shown as the magneta edge. A state
can only be underneath the state (h1 ∧ h2) ∨ (h1 ∧ h3) if
it shares the same h2 ∨ h3 edge. We test every state to
see which ones evaluate to h2 ∨ h3 in the −x23 direction.
Three acceptable states are shown: h1 ∨ h2 ∨ h3, h2 ∨ h3,
and (¬h1 ∧ h2) ∨ h3.

we still need to determine which states can be next to one
another. The Boolean expressions can be thought about
in more than one way. We have been thinking in terms of
union and intersection of sets, but we could replace them
with OR and AND operations of functions. Each half-
space has a characteristic function hi(x) which evaluates
to 1 if x is inside the half-space and to 0 if x is in the
opposite half-space. However, a third possibility is that
x intersects the plane dividing the two half-spaces. In
this case, we do not evaluate hi(x) as 0 or 1, but leave it
as the symbol hi. This symbolic representation provides
a convenient way to determine how the states connect
together.

Since the evaluation depends on which planes a point
x intersects, we keep track of the planes that a point



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 5. Even complex vertices can be described using a
Boolean expression of half-spaces. We can take all the
faces that intersect the vertex and use all of the planes
the faces are on to divide up the space into regions that
are the intersection of several half-spaces. The regions
labeled in the figure are inside the polyhedron. The vertex
state is described as the union of all these interior regions.
This vertex is simplified to (h3∧(h1∨h2))∨(h4∧(h1∨h5)).

intersects using subscripts. According to this notation,
the point x12 = n1 × n2 is on the planes of h1 and h2.

The Boolean expressions can describe many different
neighborhoods or states, including vertices, edges, and
faces. When we evaluate the expression at a point x,
essentially we get a new state that describes what we
would encounter if we travel away from a neighborhood
in the direction of x. If the expression evaluates to 0, we
travel into empty space. If it evaluates to 1, we travel into
an object’s interior. If it evaluates to h1, we travel onto a
face. If it evaluates to something like h1 ∧ h2 or h1 ∨ h2,
then we travel onto an edge. We determine if two states
can be adjacent to one another by evaluating the states
in opposite directions and checking if their evaluations
are identical. In Figure 4, the state (h1 ∧ h2) ∨ (h1 ∧ h3)
evaluates in the −z direction to h2 ∨ h3. Any state that
evaluates to h2 ∨ h3 in the +z direction can be beneath
the state (h1 ∧ h2) ∨ (h1 ∧ h3). Three examples of such
states are shown in Figure 4.

The Boolean expressions may contain more than one
object interior. In this case, we evaluate each object
interior separately and combine the results. For example,
the expression 1 · (h1 ∧ ¬h2) + 3 · h2 is used to describe
a neighborhood in which an edge h1 ∧ ¬h2 of object 1
touches a face h2 of object 3. If we evaluate the expres-
sion at the point x23 and if h1(x23) = 1, then we would
compute 1·h1(x23)∧¬h2(x23)+3·h2(x23) = 1·¬h2+3·h2.
This means that if we travel in the direction x23 we will
encounter two faces up against each other. One face is
from object 1 and the other is from object 3.

4.4 Spacing the Planes
For each vertex of Figure 2(c), we compute a list of
possible states. Each state corresponds to a neighborhood
which can be described by a Boolean expression. We first
find all states found in the input model. Each face, each
edge, each vertex, and each object interior is a different

state. However, only a small fraction of these states are
acceptable at each vertex of Figure 2(c). To be acceptable,
every half-space used in the state’s Boolean expression
must be associated with a plane that the vertex intersects.
A trihedral vertex is described using three half-spaces;
three half-spaces require three planes to intersect; and
those three planes will intersect somewhere. But non-
trihedral vertices pose a difficult problem since they can
only appear where four or more planes intersect and four
planes may never intersect. For these cases, we need to
choose the plane spacing so that four planes intersect.

We first discuss how to compute the points where
three planes intersect and then discuss how to get a
fourth plane to intersect the same points. Let n1,n2, and
n3 be the normals of three sets of planes. Within each set
of planes, the planes are parallel and evenly spaced. Let
s1, s2, and s3 be the spacing between the planes within
each set. The first and second sets of planes intersect
along lines that point in the n1 × n2 direction. If p is a
point on one of the lines, then p′ is on the same line if
p′ −p = (n1 ×n2)t for some scalar t. If p also intersects
a plane from the third set, then p′ intersect a plane if
n3 · (p′ − p) = c3s3 for some integer c3 ∈ Z. Solving for
t, we find that t = c3s3

n3·(n1×n2)
and, therefore,

p′ = p+ c3s3
n1 × n2

n3 · (n1 × n2)
(2)

for some c3 ∈ Z. This gives us a set of points along the
n1 × n2 direction where the three planes intersect. The
same argument can also be applied to the n1 × n3 and
n2 × n3 directions. Three planes intersect at the points

p′ = p+
c1s1n2 × n3

n1 · (n2 × n3)
+

c2s2n1 × n3

n2 · (n1 × n3)
+

c3s3n1 × n2

n3 · (n1 × n2)
(3)

for any c1, c2, c3 ∈ Z. Each different combination of
c1, c2, and c3 gives us a different intersection point and
the resulting intersection points form a 3D lattice. The
three planes always intersect regardless of how they are
spaced, but it is much more difficult to get four planes
to intersect. If p intersects a plane from the fourth set,
then p′ also does if n4 · (p′ − p) = c4s4 for some integer
c4 ∈ Z. The point p′ intersects the fourth set of planes if

s4 = s1
c1n4 · (n2 × n3)

c4n1 · (n2 × n3)
+ s2

c2n4 · (n1 × n3)

c4n2 · (n1 × n3)

+ s3
c3n4 · (n1 × n2)

c4n3 · (n1 × n2)
(4)

for some c4 ∈ Z. Equation (4) describes an algebraic re-
lationship that must be satisfied for four planes to inter-
sect. This relationship represents multiple equations that
need to be solved since each combination of c1, c2, and c3
produces another equation. If we solve this equation for
the combinations (c1, c2, c3, c4) = (1, 0, 0, 1) and (0, 1, 0, 1)
and (0, 0, 1, 1), then it will hold for any combination of
c1, c2, and c3. Essentially, we have three equations and
four unknowns s1, s2, s3, and s4. By solving for these
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linear equations, we produce a 3D lattice of points where
a non-trihedral vertex state may appear. However, this
only takes care of a single non-trihedral vertex state.
There may be more of these states in the input and they
would each require more equations to be solved. There
are even more difficult vertex states to handle like the
vertex shown in Figure 5 which involve five half-spaces.
These require solving more linear equations.

In the end, we may have an underconstrained or
an overconstrained set of linear equations. An overcon-
strained set of equations occurs when the input model
does not fit well within a lattice. One example of an
input shape that produces overconstrained equations is
a five-sided pyrmaid. These overconstrained equations
can be handled in several ways. One approach is to add
many more planes, but this increases the computational
cost of the overall algorithm. Another approach might
be to modify the normals just enough that the shapes
better fit on a lattice, but not so much that the normals
significantly change the results. A third option is to leave
a few of the equations unsatisfied. When this happens,
non-trihedral vertices will be generated at fewer loca-
tions, but this might be adequate to produce a good final
result.

4.5 Dimensional Constraints

We would like to give the user greater control over the
dimensions of the output. The user should be able to
control if an object can scale in a particular direction. For
example, a user might specify that a road must have a
particular width. Along its width, the road cannot scale,
but along its length, the road can scale to any length. The
ability to fix the dimensions of some objects is important
for creating realistic models.

Since the objects are created on sets of evenly spaced
planes, the lengths of each object must be an integer
multiple of the plane spacing. Objects with non-integer
dimensions like for example 1.5-plane spaces can pose
a problem. To deal with these objects the planes could
be spaced more closely. If they are spaced twice as
close, an object that was 1.5-plane spaces wide would
become three planes wide which is a round number.
Often there is an even simpler solution since objects with
dimensional constraints are often next to objects without
them and the two objects can be attached together to
produce a round number. For example, it might be
possible to combine an object 1.5 spaces wide with 0.5
spaces of empty space to produce an object two plane
spaces wide which is a round number.

Even though objects may be two, three or more plane-
spaces wide, we only need to consider the issue of how
to force an object to be exactly one-space wide since
we can easily create objects exactly two or three spaces
wide simply by attaching a few one-space wide objects
together.

Figure 6 shows a simple example of how this con-
straint is imposed. The objects can never grow wider

Fig. 6. Dimensional Constraint. To create objects that are
only one plane space wide horizontally, we disallow any
states which pass through the vertical h2 planes such as
h1 or ¬h1.

than one plane-space if every time they intersect a plane
they stop. To stop their growth, we disallow all vertex
states in which the object passes through the plane. The
object is on both sides of the plane if h2 ∧ b 6= 0 and
¬h2 ∧ b 6= 0 where h2 is the half-space parallel to the
plane and b is the Boolean expression describing the
vertex state. By removing all states where h2 ∧ b 6= 0
and ¬h2 ∧ b 6= 0, we guarantee that the objects do not
grow more than one plane-space wide.

4.6 Connectivity Constraints

In many applications, controlling the connections be-
tween objects is important. For example, this is impor-
tant when creating urban models with roads. In most
cities, one could choose any two points on a road map
and find a path that connects them. However, model
synthesis algorithms could generate isolated loops or
cycles of road networks that are not connect to each
other. This problem can be addressed by changing the
order in which the states are assigned. We begin by
choosing a starting location at random and creating an
object (e.g. road) there. Then the roads are all grown out
from this initial seed. This means that we only assign
road states to vertices that are already next to a road. By
growing out from a single seed, the generated roads are
fully connected.

A fully connected object is just one of several options
to consider. One alternative is to not use seeds at all and
to assign the states in any order. This is useful when
the user wants to create many isolated objects. A third
option fits in between the other two. The user might not
want everything to be connected, but might not want
many small isolated objects either. The user may want a
few large isolated objects. To accomplish this, everything
could be grown out not from a single seed, but from
multiple seeds.
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4.7 Large-Scale Constraints
We would also like to give the user more control over
the large-scale structure of the output. The user might
have a general idea of where certain types of objects
should appear. Each object has a particular probability
that it will appear at any location in space. Generally, we
choose to give each state an equal probability of being
chosen, but we could easily modify the probabilities
so that they are higher for any particular objects the
user wants to appear within some areas. The user could
even set some probabilities to be zero in some places.
If a state’s probability drops to zero, we can remove
it entirely and then propagate the removal as usually
done when assigning states (see Section 3.2). By chang-
ing these probabilities, we can create cities and other
structures in the shape of various symbols and other
objects. We can also generate multiple outputs, evaluate
how well they match the user’s desired goal, and select
the best output.

4.8 Algebraic Constraints and Bounding Volumes
The model synthesis algorithm creates a set of parallel
planes for every distinct normal of the input. As a
result, handling curved input models with many distinct
normals are computationally expensive because of the
large number of planes that would have to be created.
However, the number of distinct normals can be greatly
reduced by using bounding boxes and other bounding
volumes in place of complex objects. The algorithm
could be run using the bounding volumes in place of
the input model and complex objects can be substituted
back into the output model M after it is generated.

There are several alternative ways the user can con-
strain the dimensions. The object’s dimensions could
scale freely in a direction or be fixed (see Section 4.5).
A third option is to let an object scale, but to require
that it must scale uniformly in two or three directions.
For example, the cylinder in Figure 7 only remains
cylindrical if its x and y coordinates scale uniformly
sx = sy . It is free to stretch along the z-coordinate by any
amount. To get its x and y coordinates to scale equally,
we can place a bounding box around the cylinder and
the cut the box into two halves along the diagonal
creating two triangular prisms shown in Figure 7. Since
model synthesis scales triangular objects uniformly in
two dimensions, the output will be scaled identically in
x and y, sx = sy and the cylinder can be substituted back
in the shape.

The user may want to be even more restrictive and
require the scalings be uniform in all directions sx =
sy = sz . For example, the dome in Figure 7 remains
spherical only in this case. This can be accomplished by
placing a bounding box around the sphere and cutting
off a tetrahedron as shown in Figure 7. Since model
synthesis scales tetrahedra uniformly in all directions,
the output will create a uniformly scaled copy of the
bounding box.

Input Size Output Size Time
(polygons) (polygons) (minutes)

Oil Platform 60 1,377 0.5
Domes 21 324 0.1
Buildings 116 2,230 1.4
Spaceships 168 4,164 0.6
Roads 126 6,888 0.2
Roller Coaster 124 1,376 1.8
GPM 365 7,527 3.5

TABLE 1
Complexity of the input and output models and

computation time for various results computed on a 2.8
GHz single-core PC.

5 RESULTS

Figures 1, 7 - 12 show a variety of models that were
generated using our algorithm. The generated models
are large and detailed and it would be quite difficult to
model them manually using a CAD or authoring sys-
tem. The models each satisfy multiple constraints which
depend on the application. Dimensional constraints are
used in Figure 1 to give the platforms and beams a fixed
thickness. They are also used to constrain the width of
the road in Figure 10, the width of the spacecrafts in
Figure 9, and the width of the roller coaster track in
Figure 11. Incidence constraints are repeatedly used in
Figure 8 to create architecture with four faces touching
at a single vertex. Connectivity constraints are used in
Figures 1, 8, and 9 to grow the objects out from a few
seeds and this controls the distribution of the objects so
they are not all crowded together. The roads in Figure
10 are fully connected to a single seed. In Figure 9,
the parts of the spaceships are connected by beams and
have gaps in between. Figure 9 demonstrates that model
synthesis can generate shapes which have a high genus.
Bounding volumes were used in Figures 1 and 9 to
generate curved objects. Algebraic constraints were used
in Figure 7. A large-scale constraint is used in Figure 12
to generate several different types of objects in the form
of the characters “GPM”.

Each of the models was generated without requiring
much effort from the user. The input models E are
composed of only a few dozen polygons. Each of the
constraints can be specified by only changing a few
parameters or in the case of Figure 12 an image of
the letters “GPM” Table 1 shows the computation time
for modeling each shape and the size of the input and
output models. The size is given in terms of the polygon
count of the bounding volumes. All of the displayed im-
ages include artistic decorations to the vertices and edges
and some include complex objects that were generated
from bounding volumes. The polygon count does not
include any of these decorations. The computation time
depends both on the output size and on which input
model is used. Some models can be computed much
more quickly than others. The road model (Figure 10)
can be computed quickly because it is flat and does not



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

really use all three spatial dimensions. The ‘GPM’ model
takes the longest time to compute because it uses several
different input models including a spaceship model and
several building models.

6 LIMITATIONS

The amount of time and memory that model synthesis
needs depends on the number of vertices. Vertices are
generated wherever three or more planes intersect. The
number of planes depends on the number of distinct
face normals. If there are n distinct normals and m
parallel planes for each normal, there could be up to
O(n3m3) vertices. The number of distinct normals can
be reduced by using bounding volumes, but only to a
certain extent since bounding volumes can oversimplify
some objects. This makes generating curved objects us-
ing model synthesis especially difficult [30]. A related
problem is that it is difficult to generate both large
and small objects simultaneously. Small objects require
closely spaced planes while large objects require large
volumes which together means that many planes must
be created.

Like most procedural modeling techniques, model
synthesis is designed to work on objects that are self-
similar. Model synthesis works best on objects with
parts that identically match. Objects without identical
parts can be used with model synthesis, but they often
produce results that match the input too closely. Since
model synthesis is meant for digital entertainment and
gaming, we assume that objects in the input are free from
significant errors in the vertex positions. Model synthesis
works efficiently on man-made structures that can be
represented with a few planar faces, but it has difficulty
with organic and curved shapes.

Another limitation is that the objects often need to
have a grid structure. The grid is a necessary part
of some of the constraints. The dimensional constraint
assumes the dimensions fit on a grid. The incidence
constraint assumes that the vertices can be fit onto a grid.
The structure of the grid depends on the plane spacing
which can be altered to accommodate some shapes, but
not all shapes as explained in Section 4.4. Some shapes
may produce an overconstrained set of equations when
using Equation 4. Several strategies for dealing with this
problem were discussed in Section 4.4, but each of them
has downsides.

7 COMPARISON

7.1 Prior Model Synthesis Algorithms

Previous model synthesis techniques [28] only use the
adjacency constraint. Using prior algorithms without the
dimensional and algebraic constraints, most of the re-
sults would appear distorted and unnatural. Without the
connectivity constraint, the resulting models would con-
tain mostly small crowded objects. Without the incidence
constraints, none of the buildings in Figure 8 would

be generated. The large-scale constraint is required to
generate the pattern in Figure 12.

7.2 Other Procedural Modeling Techniques
Each of the model synthesis algorithms are semi-
automatic. The user must perform several tasks. The
difficulty of these tasks depends on the type of ob-
ject that is being modeled. Objects that fit on a grid
or contain mostly flat surfaces are relatively easy to
generate using model synthesis. These types of objects
are often man-made objects and are frequently found
in the architectural domain. But other shapes are more
difficult to generate using model synthesis including
many natural and organic shapes. Organic shapes are
difficult to generate with model synthesis because they
do not fit on a grid and have many distinct normals.
While model synthesis is not useful for generating every
type of objects, it offers benefits over other procedural
methods for many classes of objects. The user has a
relatively simple and straightforward objective: to find
or to create an example model and describe a set of
constraints on the output.

In contrast, the user’s objective is less simple and
straightforward for many existing procedural modeling
techniques. Many techniques require the user to con-
struct a grammar. Given the shape of an object the user
wants to model, there may not be a straightforward pro-
cedure for constructing the rules of a grammar that could
generate a similar shape. Grammars are constructed
through some human ingenuity and through trial and
error. The grammars themselves can be complicated,
even when they describe simple shapes.

The model synthesis algorithms are easier to under-
stand from a user’s perspective. The user does not
need to know anything about grammars or the inner
mechanics of the algorithm itself. The user only needs
to know a few basic facts about the algorithm. The user
deals only with the input and output models and the
constraints. The user needs to avoid creating curved
surfaces or to put bounding volumes around them. Once
a suitable example model has been created it is easy to
modify it as needed. Its parts can easily be rearranged
using standard 3D modeling programs.

Most procedural modeling techniques are aimed at
modeling specific classes of objects such as urban build-
ings [31], truss structures [39], fractals, and landscapes
[32]. But many interesting structures lie outside of these
classes of objects including spaceships, castles, oil plat-
forms, plumbing, and roller coasters, just to name a few.
Since model synthesis is a more general technique, it
is especially useful for modeling objects that cannot be
generated easily using other techniques.

A close connection between model synthesis and
context-sensitive grammars is demonstrated in Section
7.3. Both methods can be used to accomplish the same
goal. The set of acceptable models can be represented by
a grammar, but it is different in several ways from gram-
mars that are typically used in procedural modeling. The
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location of empty space is recorded in model synthesis.
Empty space is not explicitly recorded in most grammar-
based techniques. It is determined by checking that all
of the objects are absent. Model synthesis algorithms are
also good at avoiding self-intersections which is part of
the adjacency constraint. The grammars found in other
techniques may need to be carefully constructed so that
self-intersections do not occur. Another task that model
synthesis is particularly good at is in creating closed
paths such as Figure 10.

A method [5] closely related to model synthesis auto-
matically detects symmetrical parts and derives a shape
grammar. This method complements work in model syn-
thesis since the user would not need to label symmetrical
parts if this were computed automatically. Like other
shape grammars, the derived shape grammar can not
always anticipate and avoid self-intersections and may
have difficulty forming closed paths.

Model synthesis algorithms are good at creating ge-
ometric detail at a particular scale, but not at multiple
scales. For example, it is difficult for model synthesis to
create geometric detail at the scale of a building and at
the scale of the building’s window or door knob simul-
taneously. Other grammar-based methods [31], [25], [32]
create geometric detail at multiple scales more easily.

7.3 Relationship between model synthesis and Con-
text Sensitive Grammars

The problem of deciding if a string is part of the context
sensitive language L can be reduced to a problem of
deciding if a model containing that string satisfies the
adjacency constraint. A model is consistent if it it satisfies
the adjacency constraint.

For every context-sensitive language L, there is a
linear-bounded automaton that accepts L. It can be
shown that all of the actions of a linear-bounded au-
tomaton A accepting a string can be described within a
consistent model.

For any linear bounded automaton, an adjacency con-
straint can be constructed such that the model that is
generated will reproduce the actions of the automaton.
Each row of the model records the symbols on the tape,
the location of the tape head, and the state of A. For
example, suppose the problem is to determine if the
string ‘aabbcc’ is in the language {aibici|i ≥ 1}. The tape
would initially contain this input string along with two
symbols ‘<’ and ‘>’ to mark the start and end of the
tape. The width of the model M is equal to the width of
the tape. The first row of the model would contain the
labels

Row 1: < (a,q0) a b b c c >

The label (a,q0) is used to indicate that the automaton A
is in its initial state q0 and the tape head is reading the ‘a’
symbol. For every state q and every symbol in the tape
alphabet s, there is a label (q, s). Suppose that when A is
in state q0 and is reading symbol ‘a’ that it responds by

printing the symbol ‘d’ onto the tape, switching to state
q1, and remaining stationary. Then the model’s next row
would be

Row 2: < (d,q1) a b b c c >

An adjacency constraint can be constructed which
would guarantee that this row would appear beneath
row 1. The constaint is constructed to allow only one
possible option at every location which is exactly the
option that the automaton would choose. The constraint
can be constructed so that the tape head also moves
to the left or to the right. The problem of determining
if a string is part of a context-sensitive language can
be decided by determining if such a model can be
completed acceptably. This gives an overview of the
proof. More details can be found in [27].

We have discussed how a context-sensitive grammar
problem can be reduced to a model synthesis problem.
The reverse is also true. A context-sensitive grammar
can be used to generate consistent models. For every
example model E there is a linear-bounded automaton
that can examine all of the labels in the model and verify
that all adjacency labels satisfy the adjacency constraint.
This topic is explored in more detail in [27].

8 CONCLUSION AND FUTURE WORK

We have presented several major improvements to
model synthesis that allow the user to more effectively
control the output. We enable the user to fix dimensions
of objects, to specify a large-scale structure of the output,
to produce connected results, to add bounding volumes,
to have multiple object interiors, and to generate shapes
with complex vertex states. Further work is needed to
improve the efficiency of model synthesis, especially
when generating large and small objects together. More
work is needed for handling curved objects beyond
using bounding volumes [30]. One important constraint
that is still missing is one to create symmetrical objects.
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[20] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut textures:
image and video synthesis using graph cuts,” in SIGGRAPH ’03. New York,
NY, USA: ACM, 2003, pp. 277–286.

[21] J. Legakis, J. Dorsey, and S. Gortler, “Feature-based cellular texturing for
architectural models,” in Proc. Of ACM SIGGRAPH ’01, 2001, pp. 309–316.

[22] A. Lindenmayer, “Mathematical models for cellular interactions in develop-
ment i. filaments with one-sided inputs,” Journal of Theoretical Biology, vol. 18,
no. 3, pp. 280–299, March 1968.

[23] B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman, August
1982.

[24] N. J. Mitra, L. Guibas, and M. Pauly, “Partial and approximate symmetry
detection for 3d geometry,” in ACM Transactions on Graphics, vol. 25, no. 3,
2006, pp. 560–568.
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(a) Input (b) Output with Bounding Volumes (c) Output without Bounding Volumes

Fig. 7. Because model synthesis is inefficient on curved models bounding volumes are used to simplify the geometry
(a). The bounding boxes are cut into two objects, so the dome will scale uniformly and the cylinder will scale uniformly
in x and y. The output is generated and the complex original shapes are substituted back in (b,c).

(a) Input Model (b) Output Model

Fig. 8. Many complex buildings (b) are generated from four simple ones (a). The output contains many vertices
that have been constrained to intersect four faces and a few of these vertices are circled. The result also uses
the connectivity constraint to space the buildings apart which gives the buildings more room to develop into more
interesting shapes.

Fig. 9. A fleet of spaceships (b,c) is automatically generated from a simple spaceship model (a). Without the
connectivity constraint several dozen small unconnected spaceships are generated (b), but they are all packed
together. With the connectivity constraint, six large spaceships are generated (c). Dimensional constraints are
extensively used to ensure the rocket engines and other structures do not stretch unnaturally. The shape of the
spaceships have a high genus because there are gaps in between the beams and parts of the spaceships.
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(a) Input (b) Output

Fig. 10. A large fully connected road network is generated (b) from a few streets using the connectivity constraint.
The dimensions of the roads are also constrained.

(a) Input Model (b) Output Model

Fig. 11. Several long roller coasters (b) are generated from one simple ones (a). Dimensional constraints are used to
keep the track a certain width.

Fig. 12. Large-scale constraints are used to build spaceships in the shape of the letter ‘G’, rectangular buildings in
the shape of the letter ‘P’, and buildings from Figure 8 in the shape of the letter ‘M’.


