
Example-Based Model Synthesis

Paul Merrell∗

University of North Carolina at Chapel Hill

(a) (b)

Figure 1: From the example model (a), a larger model (b) is automatically created using model synthesis.

Abstract

Model synthesis is a new approach to 3D modeling which automat-
ically generates large models that resemble a small example model
provided by the user. Model synthesis extends the 2D texture syn-
thesis problem into higher dimensions and can be used to model
many different objects and environments. The user only needs to
provide an appropriate example model and does not need to provide
any other instructions about how to generate the model. Model syn-
thesis can be used to create symmetric models, models that change
over time, and models that fit soft constraints. There are two impor-
tant differences between our method and existing texture synthesis
algorithms. The first is the use of a global search to find potential
conflicts before adding new material to the model. The second dif-
ference is that we divide the problem of generating a large model
into smaller subproblems which are easier to solve.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—;

Keywords: procedural modeling, texture synthesis

1 Introduction

Many of the most visually exciting environments such as vast land-
scapes and cityscapes are quite large and quite intricate. Due to

∗e-mail: pmerrell@cs.unc.edu

their size and complexity, the task of modeling these environments
is often a long and tedious process. This difficult task could be
eliminated if there were a suitable method to model these types of
environments automatically.

Example-based techniques are widely used for texture synthesis. In
texture synthesis, the user inputs an example texture and the algo-
rithm outputs a more extensive texture that resembles the example
texture. A similar approach could be used to model large 3D envi-
ronments. The user inputs a small example model and then a com-
puter algorithm outputs a larger model that resembles the example
model. This process is illustrated in Figure 1. Figure 1(a) shows an
example model and Figure 1(b) shows the new synthesized model
generated by computer. The new model looks similar to the ex-
ample model, but is larger and more complex. Model synthesis
requires that it be possible to break apart the example model into
small building blocks that can be arranged together on a 3D grid.
Because model synthesis accepts many different example models,
it is a general-purpose procedural modeling tool.

3D artists need considerable creative freedom to be able to create
models that look both realistic and artistically interesting. This
is why it is important for them to have general-purpose modeling
tools. A procedural modeling technique that can only model a spe-
cific type of object often has limited value, because as soon as a
significantly different object is needed, the technique must be re-
programmed. We expect that 3D artists will find that creating a new
example model is often easier than adjusting an existing procedural
modeling technique to suit their needs.

1.1 Related Work

Model synthesis is closely related to texture synthesis. Recently,
many techniques have been developed for synthesizing texture. One
group of methods could be categorized as global methods which at-
tempt to match the large-scale stochastic properties of the example

texture onto the new texture [Heeger and Bergen 1995; Portilla
and Simoncelli 2000]. In a separate category are local region grow-
ing methods which synthesize the texture pixel by pixel or patch
by patch [Efros and Leung 1999; Wei and Levoy 2000; Efros and
Freeman 2001]. Model synthesis more closely resembles the local
methods.

Model synthesis could be thought of as a generalization of texture
synthesis into three or more dimensions. Previous extensions of
texture synthesis used time as the third dimension [Doretto et al.
2003; Wei and Levoy 2000; Kwatra et al. 2003]. Texture synthesis
has also been used to create 3D geometric texture on the surface of
a given model [Bhat et al. 2004].

Wang tiles are small blocks of texture that can be arranged together
on a grid to create larger textures and have been used in texture
synthesis [Cohen et al. 2003]. The 3D counterpart of a Wang tile
is a Wang cube [II and Kari 1996]. Wang cubes have been used
to model asteroid fields [Sibley et al. 2004] and to render volume
data [Lu et al. 2004]. Synthesizing a model is not difficult after
a Wang cube set has been found. However, in order to form an
acceptable Wang cube set many different parts of the model must
be stitched together without creating seams where they meet. This
can be difficult to achieve on some models.

Context-based surface completion [Sharf et al. 2004] is designed to
complete models where sections of the model are missing surface
information. Surface completion fills in any missing sections with
surfaces that resemble the rest of the model. The rest of the model
effectively acts as the example. Another tool [Funkhouser et al.
2004] can be used to stitch together parts of many different example
models to create a new model. These two methods are useful for
modeling individual objects, but model synthesis is better suited to
modeling large-scale structures.

Procedural modeling techniques that model specific objects or
environments such as plants [Mĕch and Prusinkiewicz 1996;
Prusinkiewicz et al. 2001], terrain [Musgrave et al. 1989], and
buildings [Muller et al. 2006; Legakis et al. 2001] have been ex-
tensively studied [Ebert et al. 1998], but these methods require that
many rules for generating the models be specified and are only able
to model a small class of objects. In contrast, model synthesis is
a general-purpose procedural modeling tool. While the example
model must satisfy a few requirements, any example model that
does satisfy them can be used regardless of the type of object.

2 The Consistency Problem

To describe the models, we use a set of predefined model pieces.
Model pieces are the building blocks of a model. The pieces are ar-
ranged together in space to form models. Figure 2(a) demonstrates
how a model of a pillar can be constructed using four distinct model
pieces. Every position in a 3D lattice is assigned an integer value
corresponding to the model piece that occupies the space. In this
case, there are four different model pieces numbered 0 through 3.

The model pieces are constructed manually. The example model
provided by the user is assembled from the model pieces. It must
be possible to decompose the example model into a few unique
pieces.

A model will not look plausible if it is pieced together haphazardly.
For example, Figure 2(b) shows what happens when the pieces are
arranged together without any rules. The result is a entirely unsatis-
factory. Since empty space pieces are allowed to be below the other
pieces 1 through 3, some of the columns in the model are levitating.
To avoid generating nonsensical models like this, a set of rules must
be established to ensure that the pieces all fit together correctly and

(a) (b) (c)

Figure 2: (a) A model composed of four model pieces, (b) An In-
consistent Model, (c) A Consistent Model

seamlessly. One rule is that a model piece may only be beneath an-
other model piece if it was beneath that piece in the example model.
Similarly, a model piece may only be behind another piece if it was
behind that piece in the example model. If a model obeys all these
rules, then it is consistent. More precisely, a model M is consistent
with an example model E if all the model pieces that are adjacent
to one another in M are found adjacent to one another in E along
the same direction. Consistency is tested in six directions which are
the positive and negative x, y, and z directions.

3 Method

Model synthesis is performed on a three-dimensional lattice which
consists of a set of vertices V connected by a set of edges. Each ver-
tex is occupied by a model piece. Each model piece at a particular
position in space will be represented by a label assigned to a partic-
ular vertex. If there are N possible model pieces, then there are N
possible labels. The problem of model synthesis is how to assign
a label to each vertex without violating the rules of consistency. A
labeled vertex c = (v, k) is a vertex v ∈ V that has been assigned
a label k ∈ [1 . . . N]. A model M is defined as a set of labeled
vertices. Two labeled vertices may not occupy the same space. A
model that is unfinished or incomplete will have some vertices that
are missing labels. If a model contains one labeled vertex for each
vertex in V , then it is complete.

The transition function T is a Boolean function that controls how
the vertices are labeled. Let c1 and c2 be two adjacent labeled ver-
tices. If c1 and c2 are allowed to be next to one another, T (c1, c2)
is equal to one. Otherwise, it is zero. For non-adjacent vertices,
T (c1, c2) is defined to be one. A complete model M is consistent
if for any two labeled vertices c1, c2 ∈ M, T (c1, c2) = 1. An
incomplete model M is consistent if there exists a complete consis-
tent model M ′ such that M ⊂ M ′.

In the three-dimensional Cartesian case, T is calculated from the
example model E according to the equations

T ((v1, k1), (v2, k2)) =

��������� ��������
Tx(k1, k2) , v1 = v2 + (1, 0, 0)
Tx(k2, k1) , v1 = v2 − (1, 0, 0)
Ty(k1, k2) , v1 = v2 + (0, 1, 0)
Ty(k2, k1) , v1 = v2 − (0, 1, 0)
Tz(k1, k2) , v1 = v2 + (0, 0, 1)
Tz(k2, k1) , v1 = v2 − (0, 0, 1)
1 , otherwise

Tx(k1, k2) = � 1 ,∃v|(v, k1), (v + (1, 0, 0), k2) ∈ E
0 , otherwise

Ty(k1, k2) = � 1 ,∃v|(v, k1), (v + (0, 1, 0), k2) ∈ E
0 , otherwise

Tz(k1, k2) = � 1 ,∃v|(v, k1), (v + (0, 0, 1), k2) ∈ E
0 , otherwise (1)

3.1 Global Search for Conflicts

Our goal is to create a complete consistent model. We can start with
an empty model and individually add labeled vertices to it until it is
complete. However, if we are not careful it is likely that the model
will become inconsistent as more labeled vertices are added to it.
For some labeled vertices, it is relatively easy to see that the model
will become inconsistent if they are added to it. We use a global
search to find these types of labeled vertices and remove them from
consideration. Once these labeled vertices are removed, we are left
with a set of candidate labels that we are considering adding to the
model M and this set is called C(M). C(M) is updated every time
the model changes.

A detailed explanation of how to calculate C(M) is provided in Ta-
ble 1 and a simple example of the calculation is provided in Figure
3. This calculation requires several iterations. Ct(M) is the esti-
mated value of C(M) at iteration t. During each iteration, labeled
vertices that do not belong in C(M) are removed. After many it-
erations, Ct(M) will be equal to the desired value of C(M). At
each vertex that has been assigned a label in M , all other labels
are removed in Step 1 since each vertex may only have one label.
Whenever Ct(M) changes at a vertex, all of its neighbors must be
checked to see if any of them are affected by the change. Let ut be
the set of all vertices that have been changed, but whose neighbors
have not been checked. In Step 3, a vertex v is selected out of ut

and then its neighbors are updated in Step 4. A labeled vertex only
belongs in Ct(M) if each of its neighbors has at least one possi-
ble label that is consistent with it. All labels that do not belong are
removed in Step 4. All of the vertices that changed in Step 4 are
added to the set ut+1 in Step 5. This process then repeats itself.
A new vertex is selected out of ut, its neighbors are updated, and
then any of its neighbors that have changed are added to ut. This
continues until all parts of the model that need to be checked have
been checked, which occurs when ut is empty.

This method improves upon existing texture synthesis methods that
only examine a local neighborhood before synthesizing texture. A
local search may miss some conflicts that a global search would
detect, since many model pieces have an influence far outside their
local neighborhood.

Although a global search is better than a local search, it also is im-
perfect. This global search only eliminates labeled vertices that are
relatively easy to eliminate. For some labeled vertices, it can be
extraordinarily difficult to decide if the model will become incon-
sistent if they are added to it. Deciding whether or not a model is
consistent is shown to be an NP-complete problem in the appendix.
(This proof applies to both 2D textures and 3D models.) Deciding
if a model with an additional labeled vertex is consistent is also NP-
complete. This means that we must limit the size of the models that
are being checked for consistency which is achieved by operating
on small parts of the model separately which is discussed in Section
3.2. Creating a single consistent model is not a difficult problem.
Most models contain some empty space. An entire model full of
empty is consistent, but not very interesting. Even though this solu-
tion is not very useful by itself, it can be used as an initial solution
that is improved step by step over time.

3.2 Synthesis

A detailed description of the model synthesis algorithm is given in
Table 2. An example is shown in Figure 4. We begin with a triv-
ial solution which normally consists of empty space over a ground

Figure 3: A 2D example of the C(M) Calculation

Step 1: C0(M) is the set of all labeled vertices except those
occupying the same space as another vertex in M :

C0(M) = V × [1 . . . N] − {(v, k)|∃i 6= k, (v, i) ∈ M}
Step 2: u0 is the location of all vertices in M :

u0 = {v|(v, i) ∈ M}, t = 0

Repeat Steps 3-6 while ut 6= ∅

Step 3: Select a vertex v from ut

Step 4: Remove all neighboring vertices that do not agree
with any of the labeled vertices at v:

Ct+1(M) = Ct(M) − {(v′, k)|@i, (v, i) ∈ Ct(M)
and T ((v, i), (v′, k)) = 1}

Step 5: Add all locations that changed into u and remove v:
ut+1 = (ut − v) ∪ {v′|∃k, (v′, k) ∈ Ct(M) − Ct+1(M)}

Step 6: Increment t

Table 1: C(M) Calculation

Figure 4: An example illustrating the Model Synthesis Algorithm.

Step 1: M0 is a simple consistent model, M = M0

Repeat Steps 2-5 until every part of the model has changed:

Step 2: Choose a set of vertices B to modify
Step 3: Create a new model M ′ without those vertices:

M ′ = M − {(v, k)|v ∈ B}
Step 4: While C(M ′) 6= ∅ and B 6= ∅

Pick (v, k) such that v ∈ B and (v, k) ∈ C(M ′)
M ′ = M ′ ∪ {(v, k)} and B = B − {v}

Step 5: If C(M ′) 6= ∅ then M = M ′

Table 2: Model Synthesis Algorithm

plane. Then we pick a section of the initial model to modify. Let B
be the set of vertices we have chosen to modify. Since the remain-
ing unmodified part of the model is known to be consistent, the
consistency only needs to be checked within the B region. By only
modifying the B region, the size and complexity of the problem
is lowered dramatically. Small parts of the model can be modified
much more effectively. We create a new model M ′ with all the old
labels in B removed. For each vertex in B, a new label is selected
at random from our list of candidate labels C(M ′) and assigned
to the vertex. C(M ′) can be calculated fairly quickly because the
consistency only needs to be checked within the B region. After
all the vertices in B have been labeled the changes are accepted in
Step 5. However, since C(M ′) is imperfect, there is a chance that a
label will be assigned that causes the model to become inconsistent
and C(M ′) to become empty. When this happens, the new changes
are rejected. These events are less likely to occur when the region
to modify B is small. After, the changes are accepted or rejected,
a new section B is selected and modified. Each vertex should have
the chance to be modified a few times. Successive B regions should
overlap.

3.3 Resemblance

In addition to producing consistent models, another important goal
of model synthesis is to create models that resemble the example
model. To resemble the example model, each small region of the
new model should approximately match other regions in the exam-
ple. Let ω(v, M) be a small cubic region of the model M centered
on the vertex v which has a width of 2w + 1 pieces.

ω(v, M) = {(q, k)|(v + q, k) ∈ M and q ∈ [−w . . . w]3} (2)

The perceptual distance d between two sets is defined as the number
of model pieces that are not shared between the two sets which is:

d(P, Q) = |P | − |P ∩ Q| (3)

where |P | is the cardinality of the set P .

Models that more closely resemble the example model will be pro-
duced more frequently, if the following modification is applied to
the algorithm in Table 2 at Step 4. In Step 4, one label is chosen at
the vertex v. This label should be chosen so that the perceptual dis-
tance between the new model and the example mode is minimized.
Let L(k) be the number of locations in the example model E that
closely resemble the model M ′ with (v, k) added to it, if (v, k) is
consistent

L′(k) = |{v′|d(ω(v′, E), ω(v, M ′ ∪ {(v, k)})) ≤ d0}| (4)

L(k) = � L′(k) , (v, k) ∈ C(M ′)
0 , (v, k) /∈ C(M ′)

(5)

where d0 is a threshold normally set at the minimum perceptual
distance. In Step 4, the probability of picking the label k will be
assigned the value of:

P (k) =
L(k)� N

i=1 L(i)
. (6)

This will cause the new model to more closely resemble the exam-
ple model.

4 Variants of Model Synthesis

4.1 Symmetric Models

Symmetric models can be synthesized using model synthesis.
Many different kinds of symmetry can be described using a Boolean
function of two labeled vertices called the symmetry function
S(c1, c2). S(c1, c2) is similar to the transition function T . The
transition function T describes which labeled vertices are allowed
to be in adjacent locations. The symmetry function S describes
which labeled vertices are allowed to be in symmetrical locations.
When the two vertices v1 and v2 are in symmetrical locations,
S((v1, k1), (v2, k2)) is equal to one only if the model piece cor-
responding to the label k1 is symmetric to the model piece cor-
responding to the label k2. When v1 and v2 are not in symmet-
ric locations, S((v1, k1), (v2, k2)) is equal to one. In the same
way that the transition function enforces consistency, the symme-
try function enforces symmetry. If the transition function were re-
placed by the symmetry function, the algorithm would generate
symmetric models which might not be consistent. We can cre-
ate a new transition function T ′ that combines the requirements
of both the original transition function and the symmetry function,
T ′(c1, c2) = S(c1, c2)T (c1, c2). By replacing the old transition
function with the new one, the algorithm generates models that are
both consistent and symmetric. Symmetric models can be created
with only minor changes to the algorithms.

4.2 Constrained Models

It is possible to add soft constraints to model synthesis, so that the
models that are synthesized have certain desirable characteristics.
For example, a model of a city could be constrained to be created in
the shape of another object. Analogously, there are texture synthe-
sis methods which are designed to create texture that fits some kind
of constraint [Efros and Freeman 2001; Ashikhmin 2001; Kwatra
et al. 2005].

One way a constraint can be added is based off of the Metropolis
sampling algorithm. Let f(M) be a function of the model M that
defines the constraint. We wish to find a model M that maximizes
f(M). This can be done by making a minor change to our algo-
rithm in Step 5. Originally, Step 5 would occur whenever M ′ was
consistent or, in other words, whenever M ′ was consistent, Step 5
would occur with a probability of 1. If this is changed so that Step
5 occurs with a probability of min � 1, f(M′)

f(M) 	 , then those models
which better fit the constraint are more likely to be synthesized.

Another way to add a constraint is to modify Equation (6), so that
the labels that better fit the constraint have a higher probability of
being selected.

4.3 Higher-Dimensional Models

Model synthesis can be used to create four-dimensional and higher-
dimensional objects. By adding a time dimension, it is possible
to synthesize time-varying models. The process of synthesizing a
time-varying model is almost identical to the process of synthe-
sizing a stationary model. The user inputs a time-varying exam-
ple model constructed out of time-varying model pieces, and the
algorithm synthesizes a time-varying model that resembles the in-
put. The same principles that applied in three dimensions apply in
four dimensions. Temporal consistency is just as important as spa-
tial consistency. In the same way that only some model pieces are
allowed to be adjacent to one another in space, only some model
pieces are allowed to be adjacent to one another in time. The exten-
sion into higher dimensions is fairly straightforward.

(a) (b) (c)

Figure 5: (a) Example Texture, (b) Kwatra et al. 2005, (c) 2D
Model Synthesis, Part of the example texture is magnified beneath
the original to show the 4 × 4-pixel texture pieces.

5 Results

A two-dimensional version of the algorithm was used to compare
it with another texture synthesis algorithm. The example texture is
shown in Figure 5(a). This texture was chosen because is it pos-
sible to decompose it into a few distinct texture pieces. 2D model
synthesis can not be applied to an arbitrary texture as most other
texture synthesis methods can, but for those textures that can be de-
composed in this way, model synthesis is able to exploit the decom-
position. The example model in Figure 5(a) is one continuous path
with no dead ends. Model synthesis generates a consistent texture
that is made up of only continuous paths as shown in Figure 5(c).
The result from an existing texture synthesis algorithm is shown for
comparison in Figure 5(b).

Figures 1 and 6 through 13 show a variety of models that were
generated from example models, including cities with different ar-
chitectural styles, plants, terrain, castles, and building interiors.
The synthesized models are fairly large and would require a great
amount of effort to model manually. Figure 12 shows models with
different types of symmetry that are all based off the example model
in Figure 1(a). Figure 13 shows models that are constrained to be
in the shape of different symbols. The companion video shows a
time-varying model of a city with moving cars synthesized from an
example model using 4D model synthesis.

Model synthesis can also be used to light environments containing
a large number of lights. This is done by including model pieces
that have lights in them. In Figure 8, all of the street lights and car
lights were generated using model synthesis.

The computation time required to create models using model syn-
thesis depends on the size of the B region that is modified. For
some types of models such as the city at night (Figure 8) and the
landscape (Figure 9), the algorithm is successful even when the B
region is as large the entire new model. Consequently, the models
in Figures 8 and 9 were created within a few seconds. The other
models need smaller B regions and more iterations to be success-
ful. The models in Figures 1, 6, 7, 10, and 11 took between half a
minute and half an hour to create.

6 Limitations

An important limitation is that the example models need to be man-
ually decomposed into model pieces. There are some models that
would be difficult to decompose in this way. Architectural objects
are frequently composed of elements that repeat and are structured
in a lattice. These types of objects are well-suited to model syn-
thesis. Other objects may be more difficult. Terrain, trees, and
other objects can be modeled using model synthesis, but the exam-

ple models must be constructed carefully for it to work properly. If
the example models are not constructed carefully, it is possible that
the output will be so tightly constrained that model synthesis will
simply reproduce the example model over and over. As long as the
region to modify B is kept reasonably small, the algorithm will not
become stuck in a position where further change is impossible.

7 Conclusion

A new method for automatically synthesizing models using an
example model has been presented. Model synthesis is able to
model many different large, complex environments that would be
difficult to create manually or from existing procedural modeling
techniques. Model synthesis can be extended to generate models
in motion, symmetric models, and models that fit constraints. We
have shown how to perform a global search to avoid adding any
model pieces that directly conflict with other model pieces and that
by only modifying part of the model, it is much more likely that the
modification will be successful. This allows us to generate large
consistent models.

(a) Yin and Yang (b) Example 1a (c) Wheelchair (d) Example 1a

Figure 13: Constrained Models

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. In SI3D ’01:
Proceedings of the 2001 symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, 217–226.

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture
synthesis by example. In SGP ’04: Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH symposium on Geometry process-
ing, ACM Press, New York, NY, USA, 41–44.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. ACM Trans. Graph.
22, 3, 287–294.

DORETTO, G., CHIUSO, A., SOATTO, S., AND WU, Y. 2003.
Dynamic textures. International Journal of Computer Vision 51,
2 (February), 91–109.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 1998. Texturing and Modeling. 2nd ed.
Academic Press.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. SIGGRAPH ’01, 341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In IEEE International Conference on
Computer Vision, 1033–1038.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P.,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. SIGGRAPH ’04.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture
analysis/synthesis. In SIGGRAPH ’95, 229–238.

(a) Example Model (b) Synthesized Model

Figure 6: Given two buildings (a), model synthesis produces a cluster of buildings (b).

(a) Example Model (b) Synthesized Model

Figure 7: Given a castle wall (a), model synthesis produces many fortifications (b). Grid lines are drawn in the example (a) to show how the
model is divided into pieces.

(a) Example Model (b) Synthesized Model

Figure 8: Given a few buildings (a), model synthesis produces a city (b). Grid lines are drawn in the example model.

(a) Example Model (b) Synthesized Model

Figure 9: Given a patch of land (a), model synthesis produces a landscape (b). Grid lines are drawn in the example model.

(a) Example Model (b) Synthesized Model

Figure 10: Given two trees (a), model synthesis produces a forest (b). Grid lines are drawn in the example model.

(a) Example Model (b) Synthesized Model

Figure 11: Given the interior and exterior of a building (a), model synthesis produces several buildings (b). Sections of the buildings are cut
away and the roof is made transparent to show the interior more clearly.

(a) Translational Symmetry (b) Reflectional Symmetry (c) Rotational Symmetry

Figure 12: Three symmetric models based off the example model from Figure 1(a).

II, K. C., AND KARI, J. 1996. An aperiodic set of wang cubes. In
Symposium on Theoretical Aspects of Computer Science, 137–
146.

KWATRA, V., SCHDL, A., ESSA, I., TURK, G., AND BOBICK, A.
2003. Graphcut textures: Image and video synthesis using graph
cuts. SIGGRAPH ’03, 277–286.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. SIGGRAPH
’05.

LEGAKIS, J., DORSEY, J., AND GORTLER, S. 2001. Feature-
based cellular texturing for architectural models. In SIGGRAPH
’01, 309–316.

LU, A., EBERT, D. S., QIAO, W., KRAUS, M., AND MORA, B.
2004. Interactive Volume Illustration Using Wang Cubes. Tech.
Rep. TR-ECE-04-05, Purdue University.

MĔCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In SIGGRAPH ’96,
397–410.

MULLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3, 614–623.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989. The
synthesis and rendering of eroded fractal terrains. In SIGGRAPH
’89, 41–50.

PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric tex-
ture model based on joint statistics of complex wavelet coeffi-
cients. International Journal of Computer Vision 40, 1, 49–70.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2001. The use of positional information in the mod-
eling of plants. In SIGGRAPH ’01, 289–300.

SHARF, A., ALEXA, M., AND COHEN-OR, D. 2004. Context-
based surface completion. SIGGRAPH ’04, 878–887.

SIBLEY, P., MONTGOMERY, P., AND MARAI, G. E., 2004. Wang
cubes for video synthesis and geometry placement. ACM SIG-
GRAPH 2004 Poster Compendium, August.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. In SIGGRAPH ’00, 479–
488.

A Deciding if a Texture can be Completed is
an NP-Complete Problem

We will show that deciding whether or not it is possible to fill in an
incomplete 2D model or texture and create a complete consistent
texture is an NP-complete problem. This problem is in NP since
a solution can be guessed and then verified in polynomial time by
checking the transition function at each vertex. To show that the
problem is NP-hard, we reduce a known NP-complete problem the
Planar 3-SAT problem to it. The Planar 3-SAT problem is to de-
cide the satisfiability of a Boolean formula with three literals per
clause that can be put into a planar graph. An example is shown in
Figure 14(a). The literals are connected by wires into three-input
OR gates. One of the three inputs must have a true value for the
Boolean formula to be satisfied.

To reduce the problem to a texture completion problem, we con-
struct a texture like that shown in Figure 14(c) which resembles the
planar graph. Each literal and the wires coming out of the literal
are enclosed by a group of texture pieces. The transition function

(a) (b)

(c) (d)

Figure 14: (a) A Planar 3-SAT Problem (x1∨x2∨x4)∧(x2∨x3∨
x4) ∧ (∼ x1 ∨ x2∨ ∼ x4), (b) Possible configurations of a NOT
and OR gate created from texture pieces, (c) An Equivalent texture
synthesis problem, (d) A texture synthesis solution

T is carefully chosen so that all the texture inside the enclosure is
one of two possible varieties which are the TRUE and FALSE tex-
ture pieces. The transition function is chosen so that the TRUE and
FALSE texture can never touch one another. To be consistent, ev-
erything inside the enclosures must be completely TRUE or com-
pletely FALSE. The wires may have NOT gates attached to them
and the wires meet at the OR gates.

By constructing the proper transition function, we can create NOT
gates and OR gates. A NOT gate is created by placing a particular
model piece on the wire. This piece always has one of two possible
model pieces to the right of it which are shown as blue squares with
arrows. The first of these pieces always has a true piece below it and
a false piece above it. The second possible piece always has a false
piece below it and a true piece above it. In both cases, the value on
the wire is negated and so this functions as a NOT gate. An OR gate
is created by placing a particular model piece where the three wires
meet. This piece always has one of three possible model pieces
below it which are shown with arrows. For each of these possible
pieces, the TRUE texture piece must be found in the direction the
arrow points. The other two directions may have TRUE or FALSE
values. The texture can only be completed consistently if a TRUE
value is found at one of the three incoming wires.

A solution to the Planar 3-SAT problem exists if and only if it is
possible to complete the texture in a way that all the OR gates have
at least one TRUE value and the values are negated at the NOT
gates. The Planar 3-SAT problem is reduced to the texture comple-
tion problem in polynomial time. This result extends to three and
higher dimensions, but not to the one-dimensional case.

Acknowledgements

This work benefited from discussions with Jess Martin, Jeremy
Wendt, Philippos Mordohai, and Benjamin Watson. Figure 5(b)
was provided by Vivek Kwatra.

