
Continuous Model Synthesis

Paul Merrell ∗ Dinesh Manocha
University of North Carolina at Chapel Hill

(a) Example Model (b) Synthesized Model

Figure 1: We demonstrate an application of our procedural modeling technique to generate office buildings. The models shown in (b) are
automatically generated from the example model (a). Different textures are applied to different buildings, but the shape of each building
resembles the shape of the input. The output shapes were generated in under two minutes.

Abstract

We present a novel method for procedurally modeling large com-
plex shapes. Our approach is general-purpose and takes as input
any 3D polyhedral model provided by a user. The algorithm ex-
ploits the connectivity between the adjacent boundary features of
the input model and computes an output model that has similar con-
nected features and resembles the input. No additional user input is
needed to guide the model generation and the algorithm proceeds
automatically. In practice, our algorithm is simple to implement
and can generate a variety of complex shapes representing build-
ings, landscapes, and 3D fractal shapes in a few minutes.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—;

Keywords: model synthesis, procedural modeling

1 Introduction

The problem of automatically modeling complex shapes corre-
sponding to architectural buildings, landscapes, and fractal struc-

∗http://gamma.cs.unc.edu/synthesis

tures is important for computer games, virtual environments and
computer-generated movies. Current 3D CAD and modeling tools
are limited in terms of generating complex models (e.g. urban
scenes) and can be cumbersome to use. As a result, generating
3D digital content remains a major challenge.

Many procedural modeling techniques have been developed for au-
tomated or semi-automated generation of complex shapes. These
include techniques based on shape grammars, scripting languages,
L-systems, fractals, or solid texturing. In practice, they are either
limited to a specific class of models or require considerable user
input or guidance.

In this paper, we present a novel algorithm to generate complex
shapes based on model synthesis. The notion of 3D model synthesis
was initially proposed by Merrell [2007] and is inspired by recent
developments in the texture synthesis literature.

A model synthesis algorithm accepts a simple 3D shape as an in-
put such as Figure 1(a) and then outputs a larger more complex
model that resembles the input such as Figure 1(b). We introduce
the notion of continuous model synthesis, that is broadly applicable
to a variety of different input shapes and objects. Our algorithm
takes a simple, closed 3D polyhedral object as an input and outputs
complex shapes that are similar to it. The main idea is to gener-
ate output shapes that maintain adjacency constraints between its
boundary features (e.g. faces, edges, and vertices). We ensure that
around every point of the output shape there is a local neighborhood
that resembles a local neighborhood of the input model.

Our approach enumerates multiple configurations of each vertex,
edge, and face and discards any configurations that do not satisfy
the constraints. The runtime performance depends on the number
of distinct normal directions of the input faces. Our algorithm is

simple to implement and we demonstrate its performance on many
models. Overall, our approach offers the following benefits:

• Simplicity: Our system is simple to use and the only input is
a closed 3D polyhedral consisting of dozens of triangles. The
algorithm proceeds automatically without needing any addi-
tional guidance from the user.

• Generality: We can generate a wide variety of complex
shapes by simply varying the input shape, including architec-
tural buildings, landscapes, terrains and fractal shapes. These
shapes may contain holes, arches, and non-axis aligned faces.

• Efficiency: Our algorithm generates complex shapes in only
a few minutes.

Organization: The remainder of the paper is organized as fol-
lows. We briefly survey related work in Section 2, we describe our
algorithm in Section 3, we highlight its performance in Section 4,
and we analyze our approach and compare it to other techniques in
Section 5.

2 Related Work

A wide variety of procedural modeling techniques have been de-
signed to model specific types of objects or environments [Ebert
et al. 2002]. L-system grammars have been used to generate plants
[Mĕch and Prusinkiewicz 1996; Prusinkiewicz et al. 2001]. Ter-
rain has been modeled using fractals [Musgrave et al. 1989]. Split
grammars have been used to create architectural buildings [Müller
et al. 2006; Wonka et al. 2003]. Other techniques have been devel-
oped to create truss structures [Smith et al. 2002], layered solid
models [Cutler et al. 2002], freeform buildings [Pottmann et al.
2007], and cellular textures of bricks and masonry on building ex-
teriors [Legakis et al. 2001]. However, each of these methods is
designed to model a specific class of objects or may require that the
production rules for the model be specified within a grammar. In
[Müller et al. 2007], images of facades are used to automatically
derive shape grammar rules which are then used to model facades
procedurally. Merrell [2007] introduced a model synthesis tech-
nique to automatically generate large models from a small example
model provided by the user. However, this approach is restricted to
inputs that fit on an axis aligned grid.

Our approach to model synthesis shares a common theme with tex-
ture synthesis. The underlying goal of both techniques is to take a
small sample as an input example and generate a larger result that
resembles the input example. Texture synthesis methods have be-
come increasingly sophisticated [Efros and Leung 1999; Wei and
Levoy 2000; Efros and Freeman 2001; Kwatra et al. 2003] and
have also been applied to time-varying textures [Doretto et al. 2003;
Kwatra et al. 2003] and to create 3D geometric texture on the sur-
face of a mesh [Bhat et al. 2004]. Texture synthesis has also been
used to create 3D solid textures from 2D texture exemplars of the
texture expected on slices of the desired output [Kopf et al. 2007].

3 Model Synthesis

In this section, we describe our overall algorithm. We first present
our approach for 2D shapes and then extend it to handle 3D models.

In Section 3.1, we present a technique that automatically identi-
fies an adjacency constraint from the input model. This constraint
guides our overall approach which is depicted in Figure 2. Starting
with the input example shape shown in Figure 2(a), we create sets of
lines parallel to the input edges as shown in Figure 2(c). These lines
divide the plane into an arrangement of faces, edges, and vertices.

(a) Example Shape E(x) (b) Generated Output Shape M(x)

Figure 3: For each selected point a, b, c, d, and e in M , a locally
identical point a′, b′, c′, d′, and e′ exists in the example model E.

Each face, edge, and vertex is associated with a set of acceptable
configurations or states that satisfy the constraint defined in Sec-
tion 3.1. The set of states could be computed by dividing the input
model along parallel lines as shown in Figure 2(b). We describe a
more efficient method for computing the set of states in Section 3.2.
Section 3.3 describes an incremental method that assigns states to
each edge and each vertex and removes invalid states until an ac-
ceptable output shape is generated like the shape shown in Figure
2(d).

3.1 Adjacency Constraint

The user provides an example model as the input. We assume that
the example model is a set of polygons that form closed polyhedral
objects. Our algorithm generates a new model M that resembles
the example model E. We consider the example model to be a
function E(x) of a point in space x where E(x) = 1 if x is inside
the polyhedra of E and E(x) = 0 if x is not. The function M(x)
is similarly defined for the new model M .

We can find a small region of points near any given point x and
each region constitutes one small part of the model. Every part of
the new model M should resemble part of the example model, E.
In order to accomplish this goal, we impose a simple and effec-
tive adjacency constraint on M . At a microscopic level, every local
neighborhood found in M must also be found in E, but at a macro-
scopic level, M may contain interesting large-scale structures that
are not found in E.

The adjacency constraint states that for every point x in M , there
must exist a point x′ in E that is identical to it locally. In Figure 3,
the points a, b, c, d, and e are locally identical to the points a′, b′,
c′, d′, and e′. More formally, the point x is locally identical to x′

if for some small ε > 0 and for all small vectors δ where ||δ|| < ε,

M(x + δ) = E(x′ + δ) (1)

We refer to this as a continuous contraint since it is defined on a
continuum of points, not on a discrete grid.

3.2 Finding Valid States (2D Case)

To satisfy the constraint, each edge in the new shape M must have
the same slope as an edge in E. For each distinct slope, we create
a set of parallel lines as shown in Figure 2(c). The lines divide
the plane into small faces. These faces are the basic components
of the new shape M . Each face f is assigned one of two possible
states: 0 or 1. In state 0, all points within the face x ∈ f are
part of the exterior, M(x) = 0. In state 1, all points x ∈ f are
part of the interior. If the faces are smaller, M is composed of
more components and is more detailed. The size of the faces is

(a) Example Shape E(x) (b) Parallel lines dividing E(x) (c) Parallel lines diving up the plane. (d) Output Shape M(x)

Figure 2: Lines parallel to the input shape (a), divide the plane into faces, edges, and vertices (c). The output shape (d) is formed within the
parallel lines. The set of acceptable vertex and edges states in the output (d) can be found by dividing the input along parallel lines (b).

(a) Exterior (b) Interior (c) Edge (d) Edge

Figure 4: Possible states of an edge. Only (a-c) are found in the
example shape (Figure 2(b)).

determined by how far apart the lines are spaced. Generally, we
choose to space all the lines identically. The lines could be spaced
more closely in part of the model or for certain sets of parallel lines
to create varying amounts of detail, but in general we choose not to
do this in order to maintain a homogeneous appearance throughout
the output model.

The faces of Figure 2(c) touch along the edges. One should not
confuse the edges of Figure 2(c) with the edges ofM . The edges of
M are boundaries between its interior and exterior, but Figure 2(c)’s
edges are simply sets of points which may or may not be on the
boundaries. Figure 4 shows two faces that touch along a horizontal
edge. Let f1 be the upper face and f2 be the lower face and let s1
and s2 be the states assigned to them. An assignment A is defined
as a pairing between a state s ∈ {0, 1} and a face f , A = (f, s).
The state of the edge se in between f1 and f2 is defined as the set of
assignments made to f1 and f2, that is se = {(f1, s1), (f2, s2)}.
The edge state se = {(f1, 0), (f2, 0)} means that both faces are
exterior (Figure 4(a)). In the cases where s1 = s2 (Figure 4(a) &
4(b)), the adjacency constraint is satisfied along the edge since the
points on the edge are locally identical to the interior or exterior of
E. Figure 4(d) shows an interior region below an exterior region
along a horizontal edge. Such a configuration never appears in the
example shape shown in Figure 2(b) and it violates the adjacency
constraint. The state shown in Figure 4(c) is found in the example
model and is allowed into M . In this example, the horizontal edge
has three possible states. Edges in general may have three or four
associated states.

We also must ensure that the adjacency constraint is satisfied at
the vertices of Figure 2(c). Let us pick a magenta vertex and
call it v. The vertex v lies at the intersection of two different
edges, the horizontal blue edges and the upward red edges. Let
e1 and e2 be its two adjacent upward edges and e3 and e4 be
its two horizontal edges. Let s1, s2, s3, and s4 be the states as-
signed to e1, e2, e3, and e4 respectively. The state of the ver-
tex sv is defined as the set of assignments made to its four edges
sv = {(e1, s1), (e2, s2), (e3, s3), (e4, s4)}.

(a) Exterior (b) Interior

(c) Edge (d) Edge (e) Vertex

Figure 5: The five possible states of vertex v in Figure 2(c). Only
these states are found in the example shape (Figure 2(b)).

We need to find a list of states that satisfy the adjacency constraint
at vertex v. If all neighboring edges have exterior states (Figure
5(a)) or if all have interior states (Figure 5(b)), then the adjacency
constraint is satisfied at v. To identify other valid states, we find all
edges of the example shape E that have the same slope as e1 or e3.
In this case, we find two additional edge states shown in Figures
5(c) and 5(d). To identify more valid states, we search through the
vertices of E. We only find one vertex v′ in E whose two adjacent
edges have the same slope as e1 and e3, which results in the state
shown in Figure 5(e). The states of other vertices in Figure 2(c) can
also be found by comparing the slopes of each vertex’s adjacent
edges with the edges and vertices of the input shape.

3.3 Assigning Consistent States (2D Case)

Algorithm 1 gives an overview of continuous model synthesis. We
have constructed a list of several possible states to assign to each
edge and each vertex (Step 2). Let us call this list of possible as-
signments C(m). We gradually narrow down the list of assign-
ments until each edge and vertex is assigned only one valid state.
Let m be the list of current assignments. Eventually m will contain
assignments to every edge and vertex and will determine the output
model M .

Initially, no states are assigned (m = ∅) and C(m) includes all
possible states identified in Section 3.2. Every state that agrees with
the adjacency constraint is equally valid. At each edge or vertex, we
randomly select and assign a single state from among the choices
found in C(m).

Figure 6(a) depicts the initial configuration of C(m). Initially, ev-
ery face, edge, and vertex has all possible states present and then

Algorithm 1 Overview of Continuous Model Synthesis
1: Create planes parallel to E to form solid regions, faces, edges,

and vertices.
2: Find list of all acceptable states at each edge and vertex and

store in C(m).
3: while there exists an unassigned edge or vertex v do
4: Randomly select a state s from C(m).
5: Assign s to v. m = m ∪ {(v, s)}.
6: Remove from C(m) all state that are incompatible with the

assignment (v, s).
7: end while

we assign states to several edges and vertices along the highlighted
row. These assignments limit which adjacent states are possible.
We remove edge and vertex assignments that disagree with their
neighboring assignments. An edge assignment (e, se) agrees with
an adjacent vertex state sv only when (e, se) ∈ sv , since vertex
states are defined as sets of adjacent edge assignments. The result
after the first removal is shown in Figure 6(b). This removal limits
which states are possible in other edges and vertices, which com-
pels us to remove more states. We continue to remove more and
more states until there are none left to remove as shown in Fig-
ure 6(c). We continue to select from the remaining assignments
in C(m) and then update C(m). This continues until every edge
and vertex has been assigned a single state. The shape produced in
Figure 6(c) achieves the desired result of a triangle that is similar
to the input triangle in Figure 2(a) and that satisfies the adjacency
constraint everywhere.

Unfortunately, for some input models, it is possible the algorithm
may make an incorrect assignment that eventually causes the list
of possible assignments C(m) to become empty. In this case, the
algorithm has not computed a valid and consistent set of assign-
ments and so it must backtrack. If this occurs we use the strat-
egy described in [Merrell 2007] which is to not try to fill up the
whole modeling space at once, but to modify small parts of the
space as shown in Figure 7. It is much less likely the algorithm
will make an incorrect assignment if it is only modifying a small
part of the space. Empirically, we have found that our algorithm
almost always succeeds when modifying a volume of 10 x 10 x 10
or smaller (in units of plane spacings). Many input models such as
those shown in Figures 1, 10 - 12 do not have this problem. With
these inputs, the algorithm always succeeds even when modifying
huge volumes. But even in the worst case, there is never any dan-
ger of an over-constrained input causing an immediate failure since
solutions exist for all inputs. A solution must only satisfy the adja-
cency constraint. The input model trivially satisfies the constraint
as do stretched copies of the input. A solution can always be found,
although it may be necessary to modify the output in parts to find
it.

3.4 Generating Three-Dimensional Models

The three-dimensional problem of generating 3D models is quite
similar to the 2D problem. To demonstrate the algorithm, we will
use as our example model E(x) the tetrahedron shown in Figure
8(a). For every distinct face normal, we create a set of parallel
planes having the same normal. For the tetrahedron, we create four
sets of parallel planes shown in Figure 8(b). These planes partition
the space into solid regions. Each solid region has two possible
states. It could have all interior points or all exterior points. Solid
regions touch along faces, faces touch along edges, and edges touch
at vertices.

Vertices occur wherever three planes intersect. Let us pick a ver-

(a) Initial model
with exterior assign-
ments.

(b) Clear assign-
ments in part of the
model.

(c) Modify part of
the model.

(d) Clear a new part. (e) Modify new part.

Figure 7: This shows how the model can be created by only mod-
ifying part of the model at once. Each part is modified so that it is
consistent with the rest of the model along the border.

(a) Input Model E(x) (b) Parallel planes based on E

Figure 8: 3D Case. Planes parallel to the faces of the input divide
space into solid regions, faces, edges, and vertices in which the
output is created.

tex and call it v and try to determine what states are possible at
v. In order to perform this step, we search the example model for
all vertices whose three faces are parallel to the three planes at v.
Suppose that we intentionally picked v so its three planes match
the faces that touch the tetrahedron’s top vertex. The vertex v has
nine possible states as shown in Figure 9. It could be a vertex as
shown in Figure 9(e). We could remove one of the faces, yielding
the three edge states shown in Figure 9(d). We could remove two
of the faces, yielding the three face states shown in Figure 9(c). We
could remove all three faces, yielding a pure interior (Figure 9(b))
or a pure exterior state (Figure 9(a)). The method for finding states
in 3D is described in more detail in Algorithm 2. A similar pro-
cedure can be to determine which states are allowed at the edges.
Once we find the possible states of the vertices and edges, we can
use the method described in Section 3.3 to assign a single state to
each.

4 Results

Figures 1, 10 - 13 show a wide variety of different models generated
using our algorithm. The generated models are large and detailed
and it would be time-consuming to model them manually using a
CAD or authoring system. The output model for each result was
generated in less than two minutes as shown in Table 1. The total
time spent by the human user is also short. The user only supplied

(a) We begin by allowing all possible states to be
at every face, edge, and vertex. Then we assign a
few states to the highlighted locations.

(b) Using Figures 4 and 5, we remove adjacent
states that are incompatible with the previously
assigned states.

(c) After states are removed, their removal causes
other states to be removed. The result after all in-
compatible states have been removed is a triangle.

Figure 6: The evolution of the list of possible states C(m) over time.

(a) Exterior (b) Interior (c) Face States

(d) Edge States (e) Vertex

Figure 9: The possible states of a 3D vertex found in the input
model.

Input Size Output Size Time
(polygons) (polygons) (minutes)

Skyscrapers 27 9,542 1.8
Terrain 22 922 0.5
Fractals 8 5,743 0.2
Arches 20 1,002 0.5
Houses 39 1,908 1.3
Pentagons 33 2,004 1.1

Table 1: Complexity of the input and output models and computa-
tion time for various results.

the size of the output and the example models which are quite sim-
ple. In order to demonstrate how simple the input models can be,
we created them with only a few dozen polygons as shown in Table
1, but they could be much larger. They were manually created in a
few minutes using 3D Studio Max. The exact same algorithm gen-
erated all the models shown in Figures 1, 10 - 13 without adjusting
anything but the input model and the output size. The output mod-
els are not merely copies of the input model, but contain interesting
new features not found in the input.

Algorithm 2 Method for finding all acceptable states of a 3D vertex
which lies at the intersection of three planes with the normals N =
{n1, n2, n3}. The vertex states are defined as assignments to the
vertex’s six adjacent edges.

1: Find a point p on each face, edge, and vertex of the input whose
faces are parallel to N .

2: for all points p do
3: for all directions d ∈ {n1×n2,−n1×n2, n1×n3,−n1×

n3, n2 × n3,−n2 × n3} do
4: Determine the geometry at p + εd. There are (14) possi-

bilities. If p + εd is . . .
5: . . . on a face, determine its normal direction (4).
6: . . . on a edge, determine the normal directions of its two

faces and if the angle between them is a reflex angle (8).
7: . . . in the interior or exterior (2).
8: end for
9: end for

5 Analysis and Comparison

Other methods are also able to efficiently produce large detailed
models of buildings [Müller et al. 2006; Wonka et al. 2003], but
may require more guidance from the user. These algorithms use
shape grammars to construct the shapes. In order to produce differ-
ent shapes, the user must specific and adjust many production rules
of the grammar. This addition user input has the advantage of giv-
ing the user greater control over some aspects of the result, but it
requires more effort from the user. Müller et al. [2006] adapt archi-
tectural concepts to derive a set of specific shape rules for buildings.
Our approach is rather complementary, where the user only needs
to specify an input model.

In many ways, continuous model synthesis can be regarded as a
major extension of discrete model synthesis techniques proposed
by Merrell [2007]. The key difference is that in [Merrell 2007] the
example models were manually partioned into small axis-aligned
parts that fit on a 3D Cartesian grid. This manual partioning is
time-consuming. Moreover, the previous approach does not work
well on models that do not naturally fit on a grid such as Figures
10, 12, and 13. In these cases, the output of model synthesis is so
tightly constrained that the previous method simply reproduces the
input.

Limitations: Continuous model synthesis is more general and flex-
ible because it can accept models that do not fit into tiles, but its
generality and flexibility is still limited in several ways. While the

(a) Input Example (b) Output Synthesized Model (c) Input Example (d) Output Synthesized Model

Figure 10: From the example model (a), rocky terrain is generated (b). The Sierpinski Tetrahedron (c) is used as an input to generate fractal
structures (d).

Figure 11: From the input example model (left) many arches are synthesized (right). The output contains interesting new variations not found
in the input such as structures with multiple arches and arches passing over arches (insets).

(a) Input Example Model (b) Output Synthesized Model

Figure 12: From the input model (a), houses are automatically generated (b). Each house has a complex and unique roof structure.

(a) Input Example Model (b) Output Synthesized Model

Figure 13: From the input example model (a) pentagonal buildings are synthesized (b). Most of the faces are not aligned with the axes. Most
buildings are complex combinations of many pentagonal shapes and have a unique shape.

method works wells on input models that have a small number of
distinct face normals, the time and memory requirements increase
with the number of distinct normals. If m parallel planes are gen-
erated for each of n distinct normals, then there could be up to
O(n3m3) vertices. So it is impractical for processing curved or
highly tessellated models.

Another limitation is that it is difficult to generate objects at differ-
ent scales. For example, it would be difficult to model a large build-
ing while also creating many architectural details. Even though
the details could be generated by spacing the parallel planes more
closely, the extra planes would consume much more time and mem-
ory.

The algorithm described above is automatic and the user is unable
to control many aspects of the output. Since the adjacency con-
straint only operates on a small scale, the large-scale structure of
the output can only be indirectly influenced by the user and so the
result may not meet the user’s expectations and may look unnatural
in some cases. The results could be improved by imposing addi-
tional constraints to control the size and distribution of the objects.
One the the most important missing constraints is a way for the user
to specify that an object must have a particular width or height since
many objects used in architecture and other applications have fixed
dimensions.

6 Conclusions and Future Work

We have presented a method for automatically modeling large com-
plex shapes that resemble simple models provided by the user. The
user can input a wide variety of different shapes and the algorithm
outputs many valid and interesting procedurally generated shapes.
The input model need not be axis aligned or fit on a grid and this
gives the algorithm greater generality and flexibility. However, fur-
ther work is needed to improve the quality of the generated shapes.
First, many shapes such as pyramids have more than three faces
intersecting at a vertex and these shapes are not handled properly.
Second, we would like to allow the user to impose additional con-
straints. The adjacency constraint should be modified to constrain
some objects to be a fixed discrete size. Such a method would com-
bine the strengths of both a continuous and a discrete model synthe-
sis technique and would allow the user to more effectively control
the output.

Acknowledgements

We would like to thank the reviewers for their comments. This work
was supported in part by ARO Contracts DAAD19-02-1-0390 and
W911NF-04-1-0088, NSF awards 0400134, 0429583 and 0404088,
DARPA/RDECOM Contract N61339-04-C-0043, and Intel.

References

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture
synthesis by example. In SGP ’04: Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH symposium on Geometry process-
ing, ACM Press, New York, NY, USA, 41–44.

CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND
JAGNOW, R. 2002. A procedural approach to authoring solid
models. ACM Trans. Graph. 21, 3, 302–311.

DORETTO, G., CHIUSO, A., SOATTO, S., AND WU, Y. 2003.
Dynamic textures. International Journal of Computer Vision 51,
2 (February), 91–109.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing and Modeling. 3rd ed. Aca-
demic Press.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. SIGGRAPH ’01, 341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In IEEE International Conference on
Computer Vision, 1033–1038.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2d exemplars. ACM Trans. Graph. 26, 3, 2.

KWATRA, V., SCHDL, A., ESSA, I., TURK, G., AND BOBICK, A.
2003. Graphcut textures: Image and video synthesis using graph
cuts. Proc. Of ACM SIGGRAPH ’03, 277–286.

LEGAKIS, J., DORSEY, J., AND GORTLER, S. 2001. Feature-
based cellular texturing for architectural models. In Proc. Of
ACM SIGGRAPH ’01, 309–316.

MERRELL, P. 2007. Example-based model synthesis. In I3D ’07:
Symposium on Interactive 3D graphics and games, ACM Press,
105–112.

MĔCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In Proc. Of ACM SIG-
GRAPH ’96, 397–410.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3, 614–623.

MÜLLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades. ACM Trans.
Graph. 26, 3, 85.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989. The
synthesis and rendering of eroded fractal terrains. In Proc. Of
ACM SIGGRAPH ’89, 41–50.

POTTMANN, H., LIU, Y., WALLNER, J., BOBENKO, A., AND
WANG, W. 2007. Geometry of multi-layer freeform structures
for architecture. Proc. Of ACM SIGGRAPH ’07.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2001. The use of positional information in the mod-
eling of plants. In Proc. Of ACM SIGGRAPH ’01, 289–300.

SMITH, J., HODGINS, J., OPPENHEIM, I., AND WITKIN, A.
2002. Creating models of truss structures with optimization.
ACM Trans. Graph. 21, 3, 295–301.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. In Proc. Of ACM SIG-
GRAPH ’00, 479–488.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. In Proc. Of ACM SIGGRAPH ’03,
669–677.

